Phagocytic immune cells kill pathogens in the phagolysosomal compartment with a cocktail of antimicrobial agents. Chief among them are reactive species produced in the so-called oxidative burst. Here, we show that bacteria exposed to a neutrophil-like cell line experience a rapid and massive oxidation of cytosolic thiols. Using roGFP2-based fusion probes, we could show that this massive breakdown of the thiol redox homeostasis was dependent on phagocytosis, presence of NADPH oxidase and ultimately myeloperoxidase. Interestingly, the redox-mediated fluorescence change in bacteria expressing a glutathione-specific Grx1-roGFP2 fusion protein or an unfused roGFP2 showed highly similar reaction kinetics to the ones observed with roGFP2-Orp1, under all conditions tested. We recently observed such an indiscriminate oxidation of roGFP2-based fusion probes by HOCl with fast kinetics in vitro. In line with these observations, abating HOCl production in immune cells with a myeloperoxidase inhibitor significantly attenuated the oxidation of all three probes in bacteria.
Adherence of vaginal isolates of Escherichia coli, Lactobacillus species, group B streptococci, Gardnerella vaginalis and Neisseria gonorrhoeae to exfoliated vaginal epithelial cells was studied in 10 healthy, sexually active medical students. Studies were done pre- and postmenstrually and at midcycle for two consecutive menstrual cycles. The mean number of adherent bacteria per vaginal epithelial cell (range) was 3.4 (0 to 14) for E. coli, 60.5 (12 to 152) for Lactobacillus species, 54.8 (21 to 76) for group B streptococci, 67.4 (15 to 161) for G. vaginalis, and 58.9 (15 to 186) diplococci for N. gonorrhoeae. Adherence of G. vaginalis increased with increasing acidity of the test medium (pH 4 to 8). There were no significant differences in adherence to vaginal epithelial cells obtained at the various times in the menstrual cycle for any of the organisms (p greater than 0.05). The pattern and extent of adherence among the women was similar for each organism. In this in vitro model, adherence characteristics did not vary with the menstrual cycle.
This article contains representative fluorescence excitation spectra of roGFP2-based probes used for ratiometric analysis of redox changes as presented in the article "Systematic in vitro assessment of responses of roGFP2-based probes to physiologically relevant oxidant species" [1]. The recombinant probes roGFP2, roGFP2-Orp1, and Grx1-roGFP2 were exposed to various oxidative and nitrosative species, including hydrogen peroxide (H2O2), aldrithiol-2 (AT-2), glutathione disulfide (GSSG), hypochlorous acid (HOCl), S-nitrosoglutathione (GSNO), peroxynitrite (ONOO−), potassium polysulfide (K2Sx), spermine NONOate (SperNO), and diethyl amino NONOate (DeaNO) at different molar ratios. Fluorescence excitation spectra of the probes were recorded in the excitation wavelength range between 350 and 500 nm and for a total of 60 min. Analysis and interpretation of the data is presented in an associated article [1].
The thiol redox balance in the periplasm of E. coli depends on the DsbA/B pair for oxidative power and the DsbC/D system as its complement for isomerization of non-native disulfides. While the standard redox potentials of those systems are known, the in vivo redox potential imposed onto protein thiol disulfide pairs in the periplasm remains unknown. Here, we used genetically encoded redox probes (roGFP2 and roGFP-iL), targeted to the periplasm, to directly probe the thiol redox homeostasis in this compartment. These probes contain two cysteine residues, that are virtually completely reduced in the cytoplasm, but once exported into the periplasm, can form a disulfide bond, a process that can be monitored by fluorescence spectroscopy. Even in the absence of DsbA, roGFP2, exported to the periplasm, was fully oxidized, suggesting the presence of an alternative system for the introduction of disulfide bonds into exported proteins. However, the absence of DsbA shifted the periplasmic thiol-redox potential from -228 mV to a more reducing -243 mV and the capacity to re-oxidize periplasmic roGFP2 after a reductive pulse was significantly decreased. Re-oxidation in a DsbA strain could be fully restored by exogenous oxidized glutathione (GSSG), while reduced GSH accelerated re-oxidation of roGFP2 in the WT. In line, a strain devoid of endogenous glutathione showed a more reducing periplasm, and was significantly worse in oxidatively folding PhoA, a native periplasmic protein and substrate of the oxidative folding machinery. PhoA oxidative folding could be enhanced by the addition of exogenous GSSG in the WT and fully restored in a delta dsbA mutant. Taken together this suggests the presence of an auxiliary, glutathione-dependent thiol-oxidation system in the bacterial periplasm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.