The mechanism and the nature of the species formed by molecular doping of the model polymer poly(3hexylthiophene) (P3HT) in its regioregular (rre-) and regiorandom (rra-) forms in solution are investigated for three different dopants: the prototypical π-electron acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F 4 TCNQ), the strong Lewis acid tris(pentafluorophenyl)borane (BCF), and the strongly oxidizing complex molybdenum tris[1-(methoxycarbonyl)-2-(trifluoromethyl)ethane-1,2-dithiolene] (Mo(tfd-CO 2 Me) 3 ). In a combined optical and electron paramagnetic resonance study, we show that the doping of rreP3HT in solution occurs by integer charge transfer, resulting in formation of P3HT radical cations (polarons) for all of the dopants considered here. Remarkably, despite the different chemical nature of the dopants and dopant−polymer interaction, the formed polarons exhibit essentially identical optical absorption spectra. The situation is very different for the doping of rraP3HT, where we observe formation of a charge-transfer complex with F 4 TCNQ and of a "localized" P3HT polaron on nonaggregated chains upon doping with BCF, while there is no indication of dopant-induced species in the case of Mo(tfd-CO 2 Me) 3 . We estimate the ionization efficiency of the respective dopants for the two polymers in solution and report the molar extinction coefficient spectra of the three different species. Finally, we observe increased spin delocalization in regioregular compared to regiorandom P3HT by electron nuclear double resonance, suggesting that the ability of the charge to delocalize on aggregates of planarized polymer backbones plays a significant role in determining the doping mechanism.
Hybridization effects play a crucial role in determining the electronic properties of hybrid inorganic/organic interfaces. To gain insight into these important interactions, we perform a first-principles study based on hybrid density-functional theory including spin-orbit coupling, focusing on eight representative systems formed by two carbon-conjugated molecules-pyrene and perylene-physisorbed on the transition-metal dichalcogenide monolayers (TMDCs) MoS2, MoSe2 WS2, and WSe2. By means of band unfolding techniques, we analyze the band structures of the considered materials, identifying the contributions of the individual constituents as well as the signatures of their hybridization. Based on symmetry and energetic arguments, we derive general conditions for electronic hybridization between conjugated molecules and underlying TMDCs even when the former do not lie planar on the latter, thus providing the key to predict how their mutual arrangement affect their electronic interactions.
Real-time time-dependent density functional theory, in conjunction with the Ehrenfest molecular dynamics scheme, is becoming a popular methodology to investigate ultrafast phenomena on the nanoscale. Thanks to recent developments, it is also possible to explicitly include in the simulations a time-dependent laser pulse, thereby accessing the transient excitation regime. However, the complexity entailed in these calculations calls for in-depth analysis of the accessible and yet approximate (either “dressed” or “bare”) quantities in order to evaluate their ability to provide us with a realistic picture of the simulated processes. In this work, we analyze the ultrafast dynamics of three small molecules (ethylene, benzene, and thiophene) excited by a resonant laser pulse in the framework of the adiabatic local-density approximation. The electronic response to the laser perturbation in terms of induced dipole moment and excited-state population is compared to the results given by an exactly solvable two-level model. In this way, we can interpret the charge-carrier dynamics in terms of simple estimators, such as the number of excited electrons. From the computed transient absorption spectra, we unravel the appearance of nonlinear effects such as excited-state absorption and vibronic coupling. In this way, we observe that the laser excitation affects the vibrational spectrum by enhancing the anharmonicities therein, while the coherent vibrational motion contributes to stabilizing the electronic excitation already within a few tens of femtoseconds.
Hybrid interfaces formed by inorganic semiconductors and organic molecules are intriguing materials for opto-electronics. Interfacial charge transfer is primarily responsible for their peculiar electronic structure and optical response. Hence, it is essential to gain insight into this fundamental process also beyond the static picture. Ab initio methods based on real-time time-dependent density-functional theory coupled to the Ehrenfest molecular dynamics scheme are ideally suited for this problem. We investigate a laser-excited hybrid inorganic/organic interface formed by the electron acceptor molecule 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane (F4TCNQ) physisorbed on a hydrogenated silicon cluster, and we discuss the fundamental mechanisms of charge transfer in the ultrashort time window following the impulsive excitation. The considered interface is p-doped and exhibits charge transfer in the ground state. When it is excited by a resonant laser pulse, the charge transfer across the interface is additionally increased, but contrary to previous observations in allorganic donor/acceptor complexes, it is not further promoted by vibronic coupling. In the considered time window of 100 fs, the molecular vibrations are coupled to the electron dynamics and enhance intramolecular charge transfer. Our results highlight the complexity of the physics involved and demonstrate the ability of the adopted formalism to achieve a comprehensive understanding of ultrafast charge transfer in hybrid materials.
Understanding the fundamental mechanisms ruling laser-induced coherent charge transfer in hybrid organic/inorganic interfaces is of paramount importance to exploit these systems in next-generation optoelectronic applications. In a first-principles work based on real-time time-dependent density-functional theory, we investigate the ultrafast charge-carrier dynamics of a prototypical two-dimensional vertical nanojunction formed by a MoSe2 monolayer with adsorbed pyrene molecules. The response of the system to the incident pulse, set in resonance with the frequency of the lowest-energy transition in the physisorbed moieties, is clearly nonlinear. Under weak pulses, charge transfer occurs from the molecules to the monolayer, while for intensities higher than 1000 GW/cm2, the direction of charge transfer is reverted, with electrons being transferred from MoSe2 to pyrene. This finding is explained by Pauli blocking: laser-induced (de)population of (valence) conduction states saturates for intensities beyond 200 GW/cm2. Evidence of multiphoton absorption is also provided by our results. A thorough analysis of electronic current density, excitation energy, and number of excited electrons supports the proposed rationale and suggests the possibility to create an inorganic/organic coherent optical nanojunction for ultrafast electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.