Touchless fingerprint recognition represents a rapidly growing field of research which has been studied for more than a decade. Through a touchless acquisition process, many issues of touch-based systems are circumvented, e.g., the presence of latent fingerprints or distortions caused by pressing fingers on a sensor surface. However, touchless fingerprint recognition systems reveal new challenges. In particular, a reliable detection and focusing of a presented finger as well as an appropriate preprocessing of the acquired finger image represent the most crucial tasks. Also, further issues, e.g., interoperability between touchless and touch-based fingerprints or presentation attack detection, are currently investigated by different research groups. Many works have been proposed so far to put touchless fingerprint recognition into practice. Published approaches range from self identification scenarios with commodity devices, e.g., smartphones, to high performance on-the-move deployments paving the way for new fingerprint recognition application scenarios.This work summarizes the state-of-the-art in the field of touchless 2D fingerprint recognition at each stage of the recognition process. Additionally, technical considerations and trade-offs of the presented methods are discussed along with open issues and challenges. An overview of available research resources completes the work.
This work presents an automated contactless fingerprint recognition system for smartphones. We provide a comprehensive description of the entire recognition pipeline and discuss important requirements for a fully automated capturing system. In addition, our implementation is made publicly available for research purposes. During a database acquisition, a total number of 1360 contactless and contact-based samples of 29 subjects are captured in two different environmental situations. Experiments on the acquired database show a comparable performance of our contactless scheme and the contact-based baseline scheme under constrained environmental influences. A comparative usability study on both capturing device types indicates that the majority of subjects prefer the contactless capturing method. Based on our experimental results, we analyze the impact of the current COVID-19 pandemic on fingerprint recognition systems. Finally, implementation aspects of contactless fingerprint recognition are summarized.
Since early 2020, the COVID-19 pandemic has had a considerable impact on many aspects of daily life. A range of different measures have been implemented worldwide to reduce the rate of new infections and to manage the pressure on national health services. A primary strategy has been to reduce gatherings and the potential for transmission through the prioritisation of remote working and education. Enhanced hand hygiene and the use of facial masks have decreased the spread of pathogens when gatherings are unavoidable. These particular measures present challenges for reliable biometric recognition, e.g. for facial-, voiceand hand-based biometrics. At the same time, new challenges create new opportunities and research directions, e.g. renewed interest in non-constrained iris or periocular recognition, touchless fingerprint-and vein-based authentication and the use of biometric characteristics for disease detection. This article presents an overview of the research carried out to address those challenges and emerging opportunities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.