The cochlea of our auditory system is an intricate structure deeply embedded in the temporal bone. Compared with other sensory organs such as the eye, the cochlea has remained poorly accessible for investigation, for example, by imaging. This limitation also concerns the further development of technology for restoring hearing in the case of cochlear dysfunction, which requires quantitative information on spatial dimensions and the sensorineural status of the cochlea. Here, we employed X-ray phase-contrast tomography and light-sheet fluorescence microscopy and their combination for multiscale and multimodal imaging of cochlear morphology in species that serve as established animal models for auditory research. We provide a systematic reference for morphological parameters relevant for cochlear implant development for rodent and nonhuman primate models. We simulate the spread of light from the emitters of the optical implants within the reconstructed nonhuman primate cochlea, which indicates a spatially narrow optogenetic excitation of spiral ganglion neurons.
We have used time-resolved small-angle X-ray scattering (SAXS) to study the adhesion of lipid vesicles in the electrostatic strong-coupling regime induced by divalent ions.
Improved hearing restoration by cochlear implants (CI) is expected by optical cochlear implants (oCI) exciting optogenetically modified spiral ganglion neurons (SGNs) via an optical pulse generated outside the cochlea. The pulse is guided to the SGNs inside the cochlea via flexible polymer-based waveguide probes. The fabrication of these waveguide probes is realized by using 6” wafer-level micromachining processes, including lithography processes such as spin-coating cladding layers and a waveguide layer in between and etch processes for structuring the waveguide layer. Further adhesion layers and metal layers for laser diode (LD) bonding and light-outcoupling structures are also integrated in this waveguide process flow. Optical microscope and SEM images revealed that the majority of the waveguides are sufficiently smooth to guide light with low intensity loss. By coupling light into the waveguides and detecting the outcoupled light from the waveguide, we distinguished intensity losses caused by bending the waveguide and outcoupling. The probes were used in first modules called single-beam guides (SBGs) based on a waveguide probe, a ball lens and an LD. Finally, these SBGs were tested in animal models for proof-of-concept implantation experiments.
Assessing the complex three-dimensional (3D) structure of the cochlea is crucial to understanding the fundamental aspects of signal transduction in the inner ear and is a prerequisite for the development of novel cochlear implants. X-ray phase-contrast computed tomography offers destruction-free 3D imaging with little sample preparation, thus preserving the delicate structure of the cochlea. The use of heavy metal stains enables higher contrast and resolution and facilitates segmentation of the cochlea.Approach: For μ-CT of small animal and human cochlea, we explore the heavy metal osmium tetroxide (OTO) as a radiocontrast agent and delineate laboratory μ-CT from synchrotron CT. We investigate how phase retrieval can be used to improve the image quality of the reconstructions, both for stained and unstained specimens.Results: Image contrast for soft tissue in an aqueous solution is insufficient under the in-house conditions, whereas the OTO stain increases contrast for lipid-rich tissue components, such as the myelin sheaths in nervous tissue, enabling contrastbased rendering of the different components of the auditory nervous system. The overall morphology of the cochlea with the three scalae and membranes is very well represented. Further, the image quality of the reconstructions improves significantly when a phase retrieval scheme is used, which is also suitable for non-ideal laboratory μ-CT settings. With highly brilliant synchrotron radiation (SR), we achieve high contrast for unstained whole cochleae at the cellular level. Conclusions:The OTO stain is suitable for 3D imaging of small animal and human cochlea with laboratory μ-CT, and relevant pathologies, such as a loss of sensory cells and neurons, can be visualized. With SR and optimized phase retrieval, the cellular level can be reached even for unstained samples in aqueous solution, as demonstrated by the high visibility of single hair cells and spiral ganglion neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.