Here we examine how BMP, Wnt, and FGF signaling modulate activin-induced mesendodermal differentiation of mouse ES cells grown under defined conditions in adherent monoculture. We monitor ES cells containing reporter genes for markers of primitive streak (PS) and its progeny and extend previous findings on the ability of increasing concentrations of activin to progressively induce more ES cell progeny to anterior PS and endodermal fates. We find that the number of Sox17- and Gsc-expressing cells increases with increasing activin concentration while the highest number of T-expressing cells is found at the lowest activin concentration. The expression of Gsc and other anterior markers induced by activin is prevented by treatment with BMP4, which induces T expression and subsequent mesodermal development. We show that canonical Wnt-signaling is required only during late stages of activin-induced development of Sox17-expressing endodermal cells. Furthermore, Dkk1 treatment is less effective in reducing development of Sox17+ endodermal cells in adherent culture than in aggregate culture and appears to inhibit nodal-mediated induction of Sox17+ cells more effectively than activin-mediated induction. Notably, activin-induction of Gsc-GFP+ cells appears refractory to inhibition of canonical Wnt signaling but shows a dependence on early as well as late FGF signaling. Additionally, we find a late dependence on FGF signaling during induction of Sox17+ cells by activin while BMP4-induced T expression requires FGF signaling in adherent but not aggregate culture. Lastly, we demonstrate that activin-induced definitive endoderm derived from mouse ES cells can incorporate into the developing foregut endoderm in vivo and adopt a mostly anterior foregut character after further culture in vitro.
SUMMARYExtracellular signals in development, physiology, homeostasis and disease often act by regulating transcription. Herein we describe a general method and specific resources for determining where and when such signaling occurs in live animals and for systematically comparing the timing and extent of different signals in different cellular contexts. We used recombinase-mediated cassette exchange (RMCE) to test the effect of successively deleting conserved genomic regions of the ubiquitously active Rosa26 promoter and substituting the deleted regions for regulatory sequences that respond to diverse extracellular signals. We thereby created an allelic series of embryonic stem cells and mice, each containing a signal-responsive sentinel with different fluorescent reporters that respond with sensitivity and specificity to retinoic acids, bone morphogenic proteins, activin A, Wnts or Notch, and that can be adapted to any pathway that acts via DNA elements.
Activin induces the formation of definitive endoderm from mouse ES cells dependent on active fibroblast growth factor (Fgf) signaling. Here we report that Fgf4 is dispensable for activin A-induced differentiation of mouse ES cells into endoderm. We find that Fgf4(-/-) cells readily differentiate into definitive endoderm without exogenous administration of Fgf4. Additionally, we investigate the spatio-temporal dynamics of Fgf receptor (FGFR) isoform distribution in activin A-treated ES cell cultures and find that FGFR(III)c isoforms are expressed in DE as well as non-DE populations, whereas FGFR2(III)b and FGFR4 are found specifically enriched in the DE fraction. Ligands that preferentially activate the FGFR(III)c isoforms induce mesendoderm markers T and Gsc, but reduce expression of the DE marker Sox17 in activin-induced EpCAM(+) cells. In contrast, ligands specifically activating FGFR(III)b isoforms have no effect on either population. Activation of FGFR(III)c isoforms results in a strong mitogenic effect on activin A-induced ES cell progeny early in the differentiation period whereas activation of FGFR(III)b isoforms has only a moderate mitogenic effect confined to the late differentiation period. We conclude that FGFR(III)c-isoform activation selectively drives the differentiation of mES cells toward mesendoderm and that Fgf4 is dispensable for the differentiation into definitive endoderm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.