Part of the Earth Sciences CommonsThis Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska -Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska -Lincoln. AbstractSequence stratigraphy emphasizes facies relationships and stratal architecture within a chronological framework. Despite its wide use, sequence stratigraphy has yet to be included in any stratigraphic code or guide. This lack of standardization reflects the existence of competing approaches (or models) and confusing or even conflicting terminology. Standardization of sequence stratigraphy requires the definition of the fundamental model-independent concepts, units, bounding surfaces and workflow that outline the foundation of the method. A standardized scheme needs to be sufficiently broad to encompass all possible choices of approach, rather than being limited to a single approach or model.A sequence stratigraphic framework includes genetic units that result from the interplay of accommodation and sedimentation (i.e., forced regressive, lowstand and highstand normal regressive, and transgressive), which are bounded by "sequence stratigraphic" surfaces. Each genetic unit is defined by specific stratal stacking patterns and bounding surfaces, and consists of a tract of correlatable depositional systems (i.e., a "systems tract"). The mappability of systems tracts and sequence stratigraphic surfaces depends on depositional setting and the types of data available for analysis. It is this high degree of variability in the precise expression of sequence stratigraphic units and bounding surfaces that requires the adoption of a methodology that is sufficiently flexible that it can accommodate the range of likely expressions. The integration of outcrop, core, well-log and seismic data affords the optimal approach to the application of sequence stratigraphy. Missing insights from one set of data or another may limit the "resolution" of the sequence stratigraphic interpretation. 1 2 c a t u n e a n u e t a l . i n e a r t h -science r e v i e w s 92 (2009)
A process-based facies model for asymmetric wave-influenced deltas predicts significant river-borne muds with potentially lower quality reservoir facies in prodelta and downdrift areas, and better quality sand in updrift areas. Many ancient barrier-lagoon systems and 'offshore bars' may be better reinterpreted as components of large-scale asymmetric wave-influenced deltaic systems. The proposed model is based on a re-evaluation of several modern examples. An asymmetry index A is defined as the ratio between the net longshore transport rate at the mouth (in m 3 year) and river discharge (in 10 6 m 3 month )1 ).Symmetry is favoured in deltas with an index below 200 (e.g. Tiber, lobes of the Godavari delta, Rosetta lobe of the Nile, Ebro), whereas deltas with a higher index are asymmetric (e.g. Danube -Sf. Gheorghe lobe, Brazos, Damietta lobe of the Nile). Periodic deflection of the river mouth for significant distances in the downdrift direction occurs in extreme cases of littoral drift dominance (e.g. Mahanadi), resulting in a series of randomly distributed, quasi-parallel series of sand spits and channel fills. Asymmetric deltas show variable proportions of river-, wave-and tide-dominated facies both among and within their lobes. Bayhead deltas, lagoons and barrier islands form naturally in prograding asymmetric deltas and are not necessarily associated with transgressive systems. This complexity underlines the necessity of interpreting ancient depositional systems in a larger palaeogeographic context.
Using modern and ancient examples we show that river-dominated deltas formed in shallow basins have multiple coeval terminal distributary channels at different scales. Sediment dispersion through multiple terminal distributary channels results in an overall lobate shape of the river-dominated delta that is opposite to the digitate Mississippi type, but similar with deltas described as wave-dominated. The examples of deltas that we present show typical coarsening-upward delta-front facies successions but do not contain deep distributary channels, as have been routinely interpreted in many ancient deltas. We show that shallow-water river-dominated delta-front deposits are typically capped by small terminal distributary channels, the crosssectional area of which represents a small fraction of the main fluvial ''trunk'' channel.Recognizing terminal distributary channels is critical in interpretation of river-dominated deltas. Terminal distributary channels are the most distal channelized features and can be both subaerial and subaqueous. Their dimensions vary between tens of meters to kilometers in width, with common values of 100-400 m and depths of 1-3 m, and are rarely incised. The orientation of the terminal distributary channels for the same system has a large variation, with values between 123u (Volga Delta) and 248u (Lena Delta). Terminal distributary channels are intimately associated with mouth-bar deposits and are infilled by aggradation and lateral or upstream migration of the mouth bars. Deposits of terminal distributary channels have characteristic sedimentary structures of unidirectional effluent flow but also show evidence of reworking by waves and tides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.