In the past decade, much effort has been devoted to using chemical clock-type reactions in material design and driving the self-assembly of various building blocks. Urea-urease enzymatic reaction has chemical pH clock behavior in an unbuffered medium, in which the induction time and the final pH can be programmed by the concentrations of the reagents. The urea-urease reaction can offer a new alternative in material synthesis, where the pH and its course in time are crucial factors in the synthesis. However, before using it in any synthesis method, it is important to investigate the possible effects of the reagents on the enzymatic reaction. Here we investigate the effect of the reagents of the zeolite imidazole framework-8 (zinc ions and 2-methylimidazole) on the urea-urease reaction. We have chosen the zeolite imidazole framework-8 because its formation serves as a model reaction for the formation of other metal–organic frameworks. We found that, besides the inhibition effect of the zinc ions which is well-known in the literature, 2-methylimidazole inhibits the enzymatic reaction as well. In addition to the observed inhibition effect, we report the formation of a hybrid urease-zinc-2-methylimidazole hybrid material. To support the inhibition effect, we developed a kinetic model which reproduced qualitatively the experimentally observed kinetic curves.
Thermally induced deterioration processes were studied in cold worked (up to 60% deformation) SAF 2507 type super-duplex stainless steel (SDSS) by differential thermal analysis (DTA). DTA results revealed two transformations. Parent and inherited phases of these transformations were examined by other methods too, such as micro-hardness tests, optical metallography and X-ray diffraction (XRD). Finally, these transformations were identified as the formation of α’- and σ-phases. Formation of strain-induced martensite (SIM) and recrystallization were not experienced until 1000 °C, despite high degree of cold working. Activation energies of the σ-phase precipitation and α’-phase formation were determined from the Kissinger plot, through DTA measurements—they are 275 and 220 kJ/mol, respectively—in good agreement with the values found in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.