The Multi-Blade is a Boron-10-based gaseous detector introduced to face the challenge arising in neutron reflectometry at pulsed neutron sources. Neutron reflectometers are the most challenging instruments in terms of instantaneous counting rate and spatial resolution. This detector has been designed to cope with the requirements set for the reflectometers at the upcoming European Spallation Source (ESS) in Sweden. Based on previous results obtained at the Institut Laue-Langevin (ILL) in France, an improved demonstrator has been built at ESS and tested at the Budapest Neutron Centre (BNC) in Hungary and at the Source Testing Facility (STF) at the Lund University in Sweden. A detailed description of the detector and the results of the tests are discussed in this manuscript.
This review presents the implementation and full characterization of the polarization equipment of the time-of-flight neutron reflectometer PLATYPUS at the Australian Nuclear Science and Technology Organisation (ANSTO). The functionality and efficiency of individual components are evaluated and found to maintain a high neutron beam polarization with a maximum of 99.3% through polarizing Fe/Si supermirrors. Neutron spin-flippers with efficiencies of 99.7% give full control over the incident and scattered neutron spin direction over the whole wavelength spectrum available in the instrument. The first scientific experiments illustrate data correction mechanisms for finite polarizations and reveal an extraordinarily high reproducibility for measuring magnetic thin film samples. The setup is now fully commissioned and available for users through the neutron beam proposal system of the Bragg Institute at ANSTO.
PurposeRed chili peppers have been highly valued in gastronomy and traditional medicine since ancient times; it seems that it is not just an ingredient for food but also a good remedy for various medical conditions such as increased blood pressure and high levels of serum triglycerides and cholesterol, myocardial infarction, arthritis, and migraines. The objective of this study is the characterization of a new carrier used for encapsulated extract.MethodsChili pepper extract was obtained and was physically entrapped inside polyurethane microparticles in order to diminish the irritative potential of this extract. The particles were evaluated by Zetasizer measurements, small-angle neutron scattering and thermal analysis, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy; the encapsulation efficacy and the drug release profile were assessed by UV-Vis spectroscopy. Bioevaluations on mice skin were performed to predict the irritative potential of the samples.ResultsTwo different types of samples were compared: hollow polyurethane microparticles vs polyurethane particles containing the natural extract. The sizes of the particles were very similar, but the sample containing the extract presents three particle populations (the polydispersity index increases from 0.3 to 0.6 from one sample to another). The zeta-potential measurements and SEM images indicate a medium tendency to form clusters, while the UV-Vis study revealed an almost 70% encapsulation efficacy.ConclusionThe results suggest that encapsulation of a chili pepper extract inside polyurethane microparticles leads to a non-irritative product with a prolonged release: ~30% of encapsulated extract is released within the first 8 days and a maximum 45% is reached in 2 weeks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.