The authors analyzed the force and stress values in the simplified cutting model and compared the results with the literature. For the study a 2D model was created in DEFORM 2D finite element software, using the temperature depended multilinear flow stress material model. The model was compiled according to the literatures. In this analysis were the effects of relief angel, tool angle, tool radius, depth of cut, and the cutting velocity examined. The values of forces, strain, temperature, stress and shear plane angle were examined at different values of geometry and machining parameters. For these examinations were used 28 parameter combinations. As a result of the study, the results for forces are similar to the results of examined literature at every parameter. The force results were checked on a simple tool geometry.
Ebben a cikkben a hengerek közötti szimmetrikus és aszimmetrikus hengerlés deformációs viszonyait vizsgáltuk. Lemezek esetén az egyenletes keménység és feszültségeloszlás aszimmetrikus hengerléssel érhető el. A kialakuló deformációk és alakváltozások vizsgálatához a keresztmetszet pontjainak egymáshoz képesti relatív elmozdulásainak ismerete szükséges. A lemez és a henger közötti súrlódási tényező különböző modellekkel vizsgálhatóak. Hengerelt alumínium mintákból határoztuk meg az egyes pontok elmozdulását, melyekből az adatok feldolgozásával számítottuk a hengerlés közben fellépő súrlódási tényezőt. A mérési pontok elmozdulását a keménységmérési nyomokról készített hengerlés előtti és utáni optikai mikroszkópos felvételek összehasonlításával végeztük. A mintákból kinyert adatok és a végeselemes szimuláció eredményeinek összehasonlításával ellenőriztük a modellek alkalmazhatóságát.
In the present work, both symmetric and asymmetric rolling processes were investigated by means of numerical approaches. From the algorithm presented, the values of rolling pressure and sliding velocity in the roll gap were determined. These variables allow the estimation of tribological parameters of a given material. To determine the wear of the rolls and rolled materials the Archard's law has been employed. Results of numerical simulations show that the quantitative characteristics of the wear reveal a slight change for slower roll. Whereas the wear value for the faster roll increases with an increase of roll velocity ratio. It was found that for a given roll velocity ratio, rise of friction coefficient causes insignificant change in the wear value for the slower roll, while this value tends to decrease rapidly for the faster roll.
In the current work, the behavior of Al alloys during cold rolling is studied with the help of numerical approaches such as Finite Element (FEM) and Flow-Line (FLM) Models. The applicable simplifications for each method have been summarized in this contribution. For simulating the process of rolling, a material model was employed, which is based on the measured values obtained from the tensile test. The results of the conducted rolling experiments were compared with the numerical simulations performed by employing the experimental material models. The analysis of simulated and experimental data allowed us to evaluate the friction coefficient. A relationship has been established between the minimum friction coefficient necessary for rolling and the estimated one and this result is in a good agreement with the counterpart reported in literature sources. The established method was used for the evaluation of the characteristic components of the strain, namely the normal, shear, and equivalent components. The comparative study between recorded measurements and simulations indicates that both the FEM and FLM models can be successfully applied to simulate the symmetric cold rolling process of aluminum with sufficient accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.