Classifying digital images using neural networks is one of the most fundamental tasks within the field of artificial intelligence. For a long time, convolutional neural networks have proven to be the most efficient solution for processing visual data, such as classification, detection, or segmentation. The efficient operation of convolutional neural networks requires the use of data augmentation and a high number of feature maps to embed object transformations. Especially for large datasets, this approach is not very efficient. In 2017, Geoffrey Hinton and his research team introduced the theory of capsule networks. Capsule networks offer a solution to the problems of convolutional neural networks. In this approach, sufficient efficiency can be achieved without large-scale data augmentation. However, the training time for Hinton’s capsule network is much longer than for convolutional neural networks. We have examined the capsule networks and propose a modification in the routing mechanism to speed up the algorithm. This could reduce the training time of capsule networks by almost half in some cases. Moreover, our solution achieves performance improvements in the field of image classification.
Bus driver distraction and cognitive load lead to higher accident risk. Driver distraction sources and complex physical and psychological effects must be recognized and analyzed in real-world driving conditions to reduce risk and enhance overall road safety. The implementation of a camera-based system utilizing computer vision for face recognition emerges as a highly viable and effective driver monitoring approach applicable in public transport. Reliable, accurate, and unnoticeable software solutions need to be developed to reach the appropriate robustness of the system. The reliability of data recording depends mainly on external factors, such as vibration, camera lens contamination, lighting conditions, and other optical performance degradations. The current study introduces Capsule Networks (CapsNets) for image processing and face detection tasks. The authors’ goal is to create a fast and accurate system compared to state-of-the-art Neural Network (NN) algorithms. Based on the seven tests completed, the authors’ solution outperformed the other networks in terms of performance degradation in six out of seven cases. The results show that the applied capsule-based solution performs well, and the degradation in efficiency is noticeably smaller than for the presented convolutional neural networks when adversarial attack methods are used. From an application standpoint, ensuring the security and effectiveness of an image-based driver monitoring system relies heavily on the mitigation of disruptive occurrences, commonly referred to as “image distractions,” which represent attacks on the neural network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.