Loss-of-function mutations in the BRCA1 and BRCA2 genes increase the risk of cancer. Due to their function in homologous recombination repair, much research has focused on the unstable genomic phenotype of BRCA1/2 mutant cells manifest mainly as large scale rearrangements. We used whole genome sequencing of multiple isogenic chicken DT40 cell clones to precisely determine the consequences of BRCA1/2 loss on all types of genomic mutagenesis. Spontaneous base substitution mutation rates increased seven-fold upon the disruption of either BRCA1 or BRCA2, and the arising mutation spectra showed strong and specific correlation with a mutation signature associated with BRCA1/2 mutant tumours. To model endogenous alkylating damage, we determined the mutation spectrum caused by methyl methanesulfonate (MMS), and showed that MMS also induces more base substitution mutations in BRCA1/2 deficient cells. Spontaneously arising and MMS-induced insertion/deletion mutations and large rearrangements were also more common in BRCA1/2 mutant cells compared to the wild type control. A difference in the short deletion phenotypes of BRCA1 and BRCA2 suggested distinct roles for the two proteins in the processing of DNA lesions, as BRCA2 mutants contained more short deletions, with a wider size distribution, which frequently showed microhomology near the breakpoints resembling repair by non-homologous end joining. An increased and prolonged gamma-H2AX signal in MMS-treated BRCA1/2 cells suggested an aberrant processing of stalled replication forks as the cause of increased mutagenesis. The high rate of base substitution mutagenesis demonstrated by our experiments is likely to significantly contribute to the oncogenic effect of the inactivation of BRCA1 or BRCA2.
Data sharing enables research communities to exchange findings and build upon the knowledge that arises from their discoveries. Areas of public and animal health as well as food safety would benefit from rapid data sharing when it comes to emergencies. However, ethical, regulatory, and institutional challenges, as well as lack of suitable platforms which provide an infrastructure for data sharing in structured formats often lead to data not being shared, or at most shared in form of supplementary materials in journal publications. Here, we describe an informatics platform that includes workflows for structured data storage, managing and pre-publication sharing of pathogen sequencing data and its analysis interpretations with relevant stakeholders.
Community level genetic information can be essential to direct health measures and study demographic tendencies but is subject to considerable ethical and legal challenges. These concerns become less pronounced when analyzing urban sewage samples, which are ab ovo anonymous by their pooled nature. We were able to detect traces of the human mitochondrial DNA (mtDNA) in urban sewage samples and to estimate the distribution of human mtDNA haplogroups. An expectation maximization approach was used to determine mtDNA haplogroup mixture proportions for samples collected at each different geographic location. Our results show reasonable agreement with both previous studies of ancient evolution or migration and current US census data; and are also readily reproducible and highly robust. Our approach presents a promising alternative for sample collection in studies focusing on the ethnic and genetic composition of populations or diseases associated with different mtDNA haplogroups and genotypes.
Correction to: Oncogene (2017) 36, 746–755; doi:10.1038/onc.2016.243; published online 25 July 2016 In Figure 2c, the label above the middle panel in this paper was published incorrectly. The correct label should read BRCA1−/− instead of BRCA2−/−. The corrected figure 2 is below. The publishers wishto apologise for any inconvenience caused.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.