During their mitotic cycle, cylindrical fission yeast cells grow exclusively at their tips. Length growth starts at birth and halts at mitotic onset when the cells begin to prepare for division. While the growth pattern was initially considered to be exponential, during the last three decades an increasing amount of evidence indicated that it is rather a bilinear function [two linear segments separated by a rate change point (RCP)]. The main focus of this work was to clarify this and to elucidate the further question of whether the rate change occurs abruptly at the RCP or more smoothly during a transition period around it. We have analyzed the individual growth patterns obtained by time-lapse microscopy of 60 wild-type cells separately as well as that of the 'average' cell generated from their superposition. Linear, exponential, and bilinear functions were fitted to the data, and their suitability was compared using objective model selection criteria. This analysis found the overwhelming majority of the cells (70%) to have a bilinear growth pattern with close to half of them showing a smooth and not an abrupt transition. The growth pattern of the average cell was also found to be bilinear with a smooth transition.
Studying the pattern of growth and the mechanism of size control helps to clarify the connections between cell growth and division, since their coordination must work properly to maintain size homeostasis. In this study, we argue that most individual fission yeast cells grow following a bilinear pattern, and we confirm the existence of three different size control mechanisms.
Global DNA hypomethylation is a characteristic feature of colorectal carcinoma (CRC). The tumor inhibitory effect of S-adenosylmethionine (SAM) methyl donor has been described in certain cancers including CRC. However, the molecular impact of SAM treatment on CRC cell lines with distinct genetic features has not been evaluated comprehensively. HT-29 and SW480 cells were treated with 0.5 and 1 mmol/L SAM for 48 h followed by cell proliferation measurements, whole-genome transcriptome and methylome analyses, DNA stability assessments and exome sequencing. SAM reduced cell number and increased senescence by causing S phase arrest, besides, multiple EMT-related genes (e.g., TGFB1) were downregulated in both cell lines. Alteration in the global DNA methylation level was not observed, but certain methylation changes in gene promoters were detected. SAM-induced γ-H2AX elevation could be associated with activated DNA repair pathway showing upregulated gene expression (e.g., HUS1). Remarkable genomic stability elevation, namely, decreased micronucleus number and comet tail length was observed only in SW480 after treatment. SAM has the potential to induce senescence, DNA repair, genome stability and to reduce CRC progression. However, the different therapeutic responses of HT-29 and SW480 to SAM emphasize the importance of the molecular characterization of CRC cases prior to methyl donor supplementation.
Community level genetic information can be essential to direct health measures and study demographic tendencies but is subject to considerable ethical and legal challenges. These concerns become less pronounced when analyzing urban sewage samples, which are ab ovo anonymous by their pooled nature. We were able to detect traces of the human mitochondrial DNA (mtDNA) in urban sewage samples and to estimate the distribution of human mtDNA haplogroups. An expectation maximization approach was used to determine mtDNA haplogroup mixture proportions for samples collected at each different geographic location. Our results show reasonable agreement with both previous studies of ancient evolution or migration and current US census data; and are also readily reproducible and highly robust. Our approach presents a promising alternative for sample collection in studies focusing on the ethnic and genetic composition of populations or diseases associated with different mtDNA haplogroups and genotypes.
Due to the constantly increasing number of mutations in the SARS-CoV-2 genome, concerns have emerged over the possibility of decreased diagnostic accuracy of reverse transcription-polymerase chain reaction (RT-PCR), the gold standard diagnostic test for SARS-CoV-2. We propose an analysis pipeline to discover genomic variations overlapping the target regions of commonly used PCR primer sets. We provide the list of these mutations in a publicly available format based on a dataset of more than 1.2 million SARS-CoV-2 samples. Our approach distinguishes among mutations possibly having a damaging impact on PCR efficiency and ones anticipated to be neutral in this sense. Samples are categorized as “prone to misclassification” vs. “likely to be correctly detected” by a given PCR primer set based on the estimated effect of mutations present. Samples susceptible to misclassification are generally present at a daily rate of 2% or lower, although particular primer sets seem to have compromised performance when detecting Omicron samples. As different variant strains may temporarily gain dominance in the worldwide SARS-CoV-2 viral population, the efficiency of a particular PCR primer set may change over time, therefore constant monitoring of variations in primer target regions is highly recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.