During their mitotic cycle, cylindrical fission yeast cells grow exclusively at their tips. Length growth starts at birth and halts at mitotic onset when the cells begin to prepare for division. While the growth pattern was initially considered to be exponential, during the last three decades an increasing amount of evidence indicated that it is rather a bilinear function [two linear segments separated by a rate change point (RCP)]. The main focus of this work was to clarify this and to elucidate the further question of whether the rate change occurs abruptly at the RCP or more smoothly during a transition period around it. We have analyzed the individual growth patterns obtained by time-lapse microscopy of 60 wild-type cells separately as well as that of the 'average' cell generated from their superposition. Linear, exponential, and bilinear functions were fitted to the data, and their suitability was compared using objective model selection criteria. This analysis found the overwhelming majority of the cells (70%) to have a bilinear growth pattern with close to half of them showing a smooth and not an abrupt transition. The growth pattern of the average cell was also found to be bilinear with a smooth transition.
Studying the pattern of growth and the mechanism of size control helps to clarify the connections between cell growth and division, since their coordination must work properly to maintain size homeostasis. In this study, we argue that most individual fission yeast cells grow following a bilinear pattern, and we confirm the existence of three different size control mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.