Abstract-Recent natural disasters have revealed that emergency networks presently cannot disseminate the necessary disaster information, making it difficult to deploy and coordinate relief operations. These disasters have reinforced the knowledge that telecommunication networks constitute a critical infrastructure of our society, and the urgency in establishing protection mechanisms against disaster-based disruptions.Hence, it is important to have emergency networks able to maintain sustainable communication in disaster areas. Moreover, the network architecture should be designed so that network connectivity is maintained among nodes outside of the impacted area, while ensuring that services for costumers not in the affected area suffer minimal impact.As a first step towards achieving disaster resilience, the RE-CODIS project was formed, and its Working Group 1 members conducted a comprehensive literature survey on "strategies for communication networks to protect against large-scale natural disasters," which is summarized in this article.Index Terms-vulnerability, end-to-end resilience, natural disasters, disaster-based disruptions.
In this paper, an efficient identity-based batch signature verification scheme is proposed for vehicular communications. With the proposed scheme, vehicles can verify a batch of signatures once instead of in a one-by-one manner. Hence the message verification speed can be tremendously increased. To identify invalid signatures in a batch of signatures, this paper adopts group testing technique, which can find the invalid signatures with few number of batch verifications. In addition, a trust authority in our scheme is capable of tracing a vehicle's real identity from its pseudo identity, and therefore conditional privacy preserving can also be achieved. Moreover, since identitybased cryptography is employed in the scheme to generate private keys for pseudo identities, certificates are not required and thus transmission overhead can be significantly reduced.
Abstract-Achieving fast and precise failure localization has long been a highly desired feature in all-optical mesh networks. M-trail (monitoring trail) has been proposed as the most general monitoring structure for achieving unambiguous failure localization (UFL) of any single link failure while effectively reducing the amount of alarm signals flooding the networks. However, it is critical to come up with a fast and intelligent m-trail design approach for minimizing the number of m-trails and the total bandwidth consumed, which ubiquitously determines the length of the alarm code and bandwidth overhead for the mtrail deployment, respectively. In this paper, the m-trail design problem is investigated. To gain a deeper understanding of the problem, we first conduct a bound analysis on the minimum length of alarm code of each link required for UFL on the most sparse (i.e., ring) and dense (i.e., fully meshed) topologies. Then, a novel algorithm based on random code assignment (RCA) and random code swapping (RCS) is developed for solving the m-trail design problem. The prototype of the algorithm can be found in [1]. The algorithm is verified by comparing to an Integer Linear Program (ILP) approach, and the results demonstrate its superiority in minimizing the fault management cost and bandwidth consumption while achieving significant reduction in computation time. To investigate the impact of topology diversity, extensive simulation is conducted on thousands of random network topologies with systematically increased network density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.