In an online problem, the input is revealed one piece at a time. In every time step, the online algorithm has to produce a part of the output, based on the partial knowledge of the input. Such decisions are irrevocable, and thus online algorithms usually lead to nonoptimal solutions. The impact of the partial knowledge depends strongly on the problem. If the algorithm is allowed to read binary information about the future, the amount of bits read that allow the algorithm to solve the problem optimally is the so-called advice complexity. The quality of an online algorithm is measured by its competitive ratio, which compares its performance to that of an optimal offline algorithm. In this paper we study online bipartite matchings focusing on the particular case of bipartite matchings in regular graphs. We give tight upper and lower bounds on the competitive ratio of the online deterministic bipartite matching problem. The competitive ratio turns out to be asymptotically equal to the known randomized competitive ratio. Afterwards, we present an upper and lower bound for the advice complexity of the online deterministic bipartite matching problem.
In the area of graph drawing, the One-Sided Crossing Minimization Problem (OSCM) is defined on a bipartite graph with both vertex sets aligned parallel to each other and all edges being drawn as straight lines. The task is to find a permutation of one of the node sets such that the total number of all edge-edge intersections, called crossings, is minimized. Usually, the degree of the nodes of one set is limited by some constant k, with the problem then abbreviated to OSCM-k.In this work, we study an online variant of this problem, in which one of the node sets is already given. The other node set and the incident edges are revealed iteratively and each node has to be inserted into placeholders, which we call slots. The goal is again to minimize the number of crossings in the final graph. Minimizing crossings in an online way is related to the more empirical field of dynamic graph drawing. Note the slotted OSCM problem makes instances harder to solve for an online algorithm but in the offline case it is equivalent to the version without slots.We show that the online slotted OSCM-k is not competitive for any k ≥ 2 and subsequently limit the graph class to that of 2-regular graphs, for which we show a lower bound of 4/3 and an upper bound of 5 on the competitive ratio. 2•2•( n 2 −1) 1 = 2n − 4 and therefore not bounded by any fixed constant c.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.