The amelioration of cardioprotective effect of estrogen in diabetes suggests potential interactive action of estrogen and insulin on myofilament activation. We compared Ca2+-dependent Mg2+-ATPase activity of isolated myofibrillar preparations from hearts of sham and 10-wk ovariectomized rats with or without simultaneous 8 wk-induction of diabetes and from diabetic-ovariectomized rats with estrogen and/or insulin supplementation. Similar magnitude of suppressed maximum myofibrillar ATPase activity was demonstrated in ovariectomized, diabetic, and diabetic-ovariectomized rat hearts. Such suppressed activity and the relative suppression in alpha-myosin heavy chain level in ovariectomy combined with diabetes could be completely restored by estrogen and insulin supplementation. Conversely, the myofilament Ca2+ hypersensitivity detected only in the ovariectomized but not diabetic group was also observed in diabetic-ovariectomized rats, which was restored upon estrogen supplementation. Binding kinetics of beta1-adrenergic receptors and immunoblots of beta1-adrenoceptors as well as heat shock 72 (HSP72) were analyzed to determine the association of changes in receptors and HSP72 to that of the myofilament response to Ca2+. The amount of beta1-adrenoceptors significantly increased concomitant with Ca2+ hypersensitivity of the myofilament, without differences in the receptor binding affinity among the groups. In contrast, changes in HSP72 paralleled that of maximum myofibrillar ATPase activity. These results indicate that hypersensitivity of cardiac myofilament to Ca2+ is specifically induced in ovariectomized rats even under diabetes complication and that alterations in the expression of beta1-adrenoceptors may, in part, play a mechanistic role underlying the cardioprotective effects of estrogen that act together with Ca2+ hypersensitivity of the myofilament in determining the gender difference in cardiac activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.