Here, we report on adding an important dimension to the fundamental understanding of the evolution of the thin film micro structure evolution. Thin films have gained broad attention in their applications for electro-optical devices, solar-cell technology, as well storage devices. Deep insights into fundamental functionalities can be realized via studying crystallization microstructure and formation processes of polycrystalline or epitaxial thin films. Besides the fundamental aspects, it is industrially important to minimize cost which intrinsically requires lower energy consumption at increasing performance which requires new approaches to thin film growth in general. Here, we present a state of the art sputtering technique that allows for time-resolved in situ studies of such thin film growth with a special focus on the crystallization via small angle scattering and X-ray diffraction. Focusing on the crystallization of the example material of BaTiO3, we demonstrate how a prototypical thin film forms and how detailed all phases of the structural evolution can be identified. The technique is shaped to enable a versatile approach for understanding and ultimately controlling a broad variety of growth processes, and more over it demonstrate how to in situ investigate the influence of single high temperature sputtering parameters on the film quality. It is shown that the whole evolution from nucleation, diffusion adsorption and grain growth to the crystallization can be observed during all stages of thin film growth as well as quantitatively as qualitatively. This can be used to optimize thin-film quality, efficiency and performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.