Many gastropod molluscs are known to secrete mucus which allow these animals to adhere to a substrate while foraging over it. While the mucus is known to provide strong adhesion to both dry and wet surfaces, including both horizontal and vertical ones, no systematic study has been carried out to understand the strength of such adhesion under different conditions. We report here results from preliminary studies on adhesion characteristics of the mucus of a snail found in eastern India, Macrochlamys indica. When perturbed, the snail was found to secrete its adhesive mucus, which was collected and subjected to regular adhesion tests. The hydrated mucus was used as such, and also as mixed with buffer of different pH. These experiments suggest that the mucus was slightly alkaline, and showed the maximum adhesion strength of 9 kPa when present in an alkaline buffer. Preliminary studies indicate that adhesive force is related to the ability of the mucus to incorporate water. In alkaline condition, the gel like mass that it forms, incorporate water from a wet surface and enable strong adhesion.
Many gastropods release mucus hydrogels, which help them to remain attached to different substrates. Although not as strong as synthetic or biomimetic adhesives, some of these hydrogels have the ability to adhere to wet surfaces. These complex hydrogels mainly consist of proteins and carbohydrates, their natural cross-linking reactions being dependent on the presence of metals. In this paper, we investigated the role of metals in improving the underwater adhesive property of the mucus hydrogel from the slug Laevicaulis alte. We found that the strength and duration of attachment of two glass surfaces under water by the mucus hydrogel could be enhanced by its simple treatment with salts of metals, namely, Ca, Mg, Cu, or Zn. The degree of enhancement followed the order Ca 2+ < Mg 2+ < Zn 2+ < Cu 2+ . The Cu 2+ -treated hydrogel kept two glass surfaces attached under water for about 20 days, while Zn 2+ treatment caused attachment for about 15 days, as compared to the 3−5 days of attachment caused by the untreated gel. Treatment with both metals increased the underwater stability of the hydrogel almost threefold, presumably by strengthening its cross-linking. However, the Cu 2+ -treated hydrogel fell short of its adhesive function in the case of fast attachment within time scale of minutes, showing considerably low adhesive strength. From this study, we conclude that the treatment with Zn 2+ is the best choice for improvement of the underwater adhesive property in terms of strength and stability. Overall, this work presents a novel biological underwater adhesive. The dynamic behavior of this multicomponent hydrogel in a versatile metal-rich environment may guide us toward designing new useful biomimetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.