Plastic waste management is a challenge for the whole world. Manual sorting of garbage is a difficult and expensive process, which is why scientists create and study automated sorting methods that increase the efficiency of the recycling process. The plastic waste may be automatically chosen on a transmission belt for waste removal by using methods of image processing and artificial intelligence, especially deep learning, to improve the recycling process. Waste segregation techniques and procedures are applied to major groups of materials such as paper, plastic, metal, and glass. Though, the biggest challenge is separating different materials types in a group, for example, sorting different colours of glass or plastics types. The issue of plastic garbage is important due to the possibility of recycling only certain types of plastic (PET can be converted into polyester material). Therefore, we should look for ways to separate this waste. One of the opportunities is the use of deep learning and convolutional neural network. In household waste, the most problematic are plastic components, and the main types are polyethylene, polypropylene, and polystyrene. The main problem considered in this article is creating an automatic plastic waste segregation method, which can separate garbage into four mentioned categories, PS, PP, PE-HD, and PET, and could be applicable on a sorting plant or home by citizens. We proposed a technique that can apply in portable devices for waste recognizing which would be helpful in solving urban waste problems.
This work presents a new approach to speech recognition, based on the specific coding of time and frequency characteristics of speech. The research proposed the use of convolutional neural networks because, as we know, they show high resistance to cross-spectral distortions and differences in the length of the vocal tract. Until now, two layers of time convolution and frequency convolution were used. A novel idea is to weave three separate convolution layers: traditional time convolution and the introduction of two different frequency convolutions (mel-frequency cepstral coefficients (MFCC) convolution and spectrum convolution). This application takes into account more details contained in the tested signal. Our idea assumes creating patterns for sounds in the form of RGB (Red, Green, Blue) images. The work carried out research for isolated words and continuous speech, for neural network structure. A method for dividing continuous speech into syllables has been proposed. This method can be used for symmetrical stereo sound.
Abstract.
This paper focuses on combining audio-visual signals for Polish speech recognition in conditions of the highly disturbed audio speech signal. Recognition of audio-visual speech was based on combined hidden Markov models (CHMM). The described methods were developed for a single isolated command, nevertheless their effectiveness indicated that they would also work similarly in continuous audiovisual speech recognition. The problem of a visual speech analysis is very difficult and computationally demanding, mostly because of an extreme amount of data that needs to be processed. Therefore, the method of audio-video speech recognition is used only while the audiospeech signal is exposed to a considerable level of distortion. There are proposed the authors’ own methods of the lip edges detection and a visual characteristic extraction in this paper. Moreover, the method of fusing speech characteristics for an audio-video signal was proposed and tested. A significant increase of recognition effectiveness and processing speed were noted during tests - for properly selected CHMM parameters and an adequate codebook size, besides the use of the appropriate fusion of audio-visual characteristics. The experimental results were very promising and close to those achieved by leading scientists in the field of audio-visual speech recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.