Abstract. The main aim of this paper was to analyze possible utilization of the low concentration nanofluids and the magnetic field to enhance heat transfer. The studied fluids were based on water with an addition of copper particles (40-60 nm diameter). They belonged to the diamagnetic group of materials. As a first attempt to stated target the analysis of enclosure placed in the maximal value of square magnetic induction gradient was carried out. The maximum was in the centre of investigated cavity and it caused the most complex system of gravitational and magnetic buoyancy forces. In the lower part of cavity both forces acted in the same direction, while in the upper part they counteracted. Therefore an enhancement and attenuation of heat transfer could be observed. Due to the particle concentration and magnetic field action the character of flow was changed. In the case of 50 ppm nanofluid the flow was steady end the strong magnetic field didn't change much in its structure except for the suppression of some vortices. In the case of 500 ppm nanofluid the flow was not steady even without magnetic field, but increasing magnetic induction caused change of its structure towards the inertial-convective regime of turbulent flow.
Classical boundary and initial-boundary value problems in heat and mass transfer are generally formulated in a mathematically unique way. Boundary and initial conditions together with physical properties of the thermodynamic system are treated as exactly known. The influence of different kinds of mathematical model simplifications on the accuracy of solution and reliability of the model are not usually analyzed. The problems become more complicated when inverse ill-posed initialboundary problems are considered. The widely used procedure of model validation is based on direct comparison of analytical or numerical solution, unique in a mathematical sense, with measurement results. The main feature of the method presented in this article is that all experimental results are included into the mathematical model. Thus, because of the inevitable errors of measurements, the system of model equations becomes internally contradicted as the number of unknown variables is less than the number of equations. In consequence, basic laws of energy and mass conservation are not satisfied. To adjust the experimental data to the mathematical model, an orthogonal least-squares method is proposed. Special attention has been paid to the coupling of experimental data with the nucleation and grain growth models formulated by Rappaz and co-workers. Theoretical considerations are illustrated with experimental data for an Al-Si alloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.