The heat capacity of poly(trimethylene terephthalate) (PTT) has been measured using adiabatic calorimetry, standard differential scanning calorimetry (DSC), and temperature‐modulated differential scanning calorimetry (TMDSC). The heat capacities of the solid and liquid states of semicrystalline PTT are reported from 5 to 570 K. The semicrystalline PTT has a glass transition temperature of 331 K. Between 340 and 480 K, PTT can show exothermic ordering depending on the prior degree of crystallization. The melting endotherm of semicrystalline samples occurs between 480 and 505 K, with a typical onset temperature of 489 K (216°C). The heat of fusion of the semicrystalline samples is about 15 kJ mol−1. For 100% crystalline PTT the heat of fusion is estimated to be 30 ± 2 kJ mol−1. The heat capacity of solid PTT is linked to an approximate group vibrational spectrum and the Tarasov equation is used to estimate the heat capacity contribution due to skeletal vibrations (θ1 = 550.5 K and θ2 = θ3 = 51 K, Nskeletal = 19). The calculated and experimental heat capacities agree to better than ±3% between 5 and 300 K. The experimental heat capacities of liquid PTT can be expressed by: \documentclass{article}\pagestyle{empty}\begin{document}$ C^L_p(exp) $\end{document} = 211.6 + 0.434 T J K−1 mol−1 and compare to ±0.5% with estimates from the ATHAS data bank using contributions of other polymers with the same constituent groups. The glass transition temperature of the completely amorphous polymer is estimated to be 310–315 K with a ΔCp of about 94 J K−1 mol−1. Knowing Cp of the solid, liquid, and the transition parameters, the thermodynamic functions enthalpy, entropy, and Gibbs function were obtained. With these data one can compute for semicrystalline samples crystallinity changes with temperature, mobile amorphous fractions, and resolve the question of rigid‐amorphous fractions.© 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2499–2511, 1998
A new family of terephthalate-based copolyesters has been found to exhibit high impact resistance combined with good thermal properties, ultraviolet stability, optical clarity, and low color. These engineering thermoplastic compositions were prepared using conformationally rigid cis/trans-2,2,4,4tetramethyl-1,3-cyclobutanediol [CBDO] and flexible C 2-C4 aliphatic glycols. The copolymers were amorphous when the CBDO (∼50/50 cis/trans) content was about 40 to 90 mol % of total diol. Glass transition temperatures were 80-168 °C, depending on the proportion of rigid CBDO units. Impact resistance was inversely proportional to CBDO content, and notched Izod values as high as 1000 J/m were obtained. Both high Tg (>100 °C) and high impact (250-750 J/m) can be realized simultaneously for compositions containing about 50-80 mol % CBDO. Accelerated weathering indicated good inherent resistance of 1,3-propanediol/CBDO copolyterephthalate to yellowing under ultraviolet radiation. Dibutyltin oxide was more effective for transesterification of CBDO with dimethyl terephthalate than other typical catalysts. Better color and higher molecular weights were obtained with this catalyst when the flexible diol was 1,3-propanediol or 1,4-butanediol rather than ethylene glycol.
The thermodynamic properties of isotactic polypropylene in the fully crystalline, glassy, and molten state are established from 0 to 500 K based on data bank heat capacities and the vibrational frequency spectrum. The seven skeletal vibrations are described by θ3 and θ1 of 91 and 714 K for crystalline polypropylene. For the calculation of Cp − Cv, a Lindemann A0 value of 1.5 × 10−3 K mol/J was found. Calculated and experimental heat capacity data show agreement within an average error of −0.3 ± 1.6%. Glassy polypropylene was similarly treated up to the glass transition temperature at 260 K (θ3 = 78 K, θ1 = 633 K, average heat capacity error −0.6 ± 2.8%). The residual 0 K entropy of glassy polypropylene is 1.9 J/K mol. Partially crystalline polypropylene is shown through high‐sensitivity DSC measurements to have a glass transition range from 260 to 380 K. Similarly, high‐sensitivity DSC has been used to characterize the condis phase of polypropylene (conformationally disordered polypropylene) which was prior called “smectic mesophase” or “paracrystalline.” Its heat of transformation to the stable crystal phase is 600 J/mol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.