Markov processes restarted or reset at random times to a fixed state or region in space have been actively studied recently in connection with random searches, foraging, and population dynamics. Here we study the large deviations of time-additive functions or observables of Markov processes with resetting. By deriving a renewal formula linking generating functions with and without resetting, we are able to obtain the rate function of such observables, characterizing the likelihood of their fluctuations in the long-time limit. We consider as an illustration the large deviations of the area of the Ornstein-Uhlenbeck process with resetting. Other applications involving diffusions, random walks, and jump processes with resetting or catastrophes are discussed.
We study the distribution of additive functionals of reset Brownian motion, a variation of normal Brownian motion in which the path is interrupted at a given rate and placed back to a given reset position. Our goal is two-fold: (1) For general functionals, we derive a large deviation principle in the presence of resetting and identify the large deviation rate function in terms of a variational formula involving large deviation rate functions without resetting.(2) For three examples of functionals (positive occupation time, area and absolute area), we investigate the effect of resetting by computing distributions and moments, using a formula that links the generating function with resetting to the generating function without resetting.
We study the noisy Kuramoto model for two interacting communities of oscillators, where we allow the interaction in and between communities to be positive or negative (but not zero). We find that, in the thermodynamic limit where the size of the two communities tends to infinity, this model exhibits non-symmetric synchronized solutions that bifurcate from the symmetric synchronized solution corresponding to the one-community noisy Kuramoto model, even in the case where the phase difference between the communities is zero and the interaction strengths are symmetric. The solutions are given by fixed points of a dynamical system. We find a critical condition for existence of a bifurcation line, as well as a pair of equations determining the bifurcation line as a function of the interaction strengths. Using the latter we are able to classify the types of solutions that are possible and thereby identify the phase diagram of the system. We also analyze properties of the bifurcation line in the phase diagram and its derivatives, calculate the asymptotics, and analyze the synchronization level on the bifurcation line. Part of the proofs are numerically assisted. Lastly, we present some simulations illustrating the stability of the various solutions as well as the possible transitions between these solutions.
Problem definition: This paper addresses the question whether or not self-learning algorithms can learn to collude instead of compete against each other, without violating existing competition law. Academic/practical relevance: This question is practically relevant (and hotly debated) for competition regulators, and academically relevant in the area of analysis of multi-agent data-driven algorithms. Methodology: We construct a price algorithm based on simultaneous-perturbation Kiefer–Wolfowitz recursions. We derive theoretical bounds on its limiting behavior of prices and revenues, in the case that both sellers in a duopoly independently use the algorithm, and in the case that one seller uses the algorithm and the other seller sets prices competitively. Results: We mathematically prove that, if implemented independently by two price-setting firms in a duopoly, prices will converge to those that maximize the firms’ joint revenue in case this is profitable for both firms, and to a competitive equilibrium otherwise. We prove this latter convergence result under the assumption that the firms use a misspecified monopolist demand model, thereby providing evidence for the so-called market-response hypothesis that both firms’ pricing as a monopolist may result in convergence to a competitive equilibrium. If the competitor is not willing to collaborate but prices according to a strategy from a certain class of strategies, we prove that the prices generated by our algorithm converge to a best-response to the competitor’s limit price. Managerial implications: Our algorithm can learn to collude under self-play while simultaneously learn to price competitively against a ‘regular’ competitor, in a setting where the price-demand relation is unknown and within the boundaries of competition law. This demonstrates that algorithmic collusion is a genuine threat in realistic market scenarios. Moreover, our work exemplifies how algorithms can be explicitly designed to learn to collude, and demonstrates that algorithmic collusion is facilitated (a) by the empirically observed practice of (explicitly or implicitly) sharing demand information, and (b) by allowing different firms in a market to use the same price algorithm. These are important and concrete insights for lawmakers and competition policy professionals struggling with how to respond to algorithmic collusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.