Milnor-Thurston homology theory is a construction of homology theory that is based on measures. It is known to be equivalent to singular homology theory in case of manifolds and complexes. Its behaviour for non-tame spaces is still unknown. This paper provides results in this direction. We prove that Milnor-Thurston homology groups for the Warsaw Circle are trivial except for the zeroth homology group which is uncountable dimensional. Additionally, we prove that the zeroth homology group is non-Hausdorff for this space with respect a natural topology that was proposed by Berlanga.
Averaging physical quantities over Lie groups appears in many contexts across the rapidly developing branches of physics like quantum information science or quantum optics. Such an averaging process can be always represented as averaging with respect to a finite number of elements of the group, called a finite averaging set. In the previous research such sets, known as t-designs, were constructed only for the case of averaging over unitary groups (hence the name unitary t -designs). In this work we investigate the problem of constructing finite averaging sets for averaging over general non-compact matrix Lie groups, which is much more subtle task due to the fact that the the uniform invariant measure on the group manifold (the Haar measure) is infinite. We provide a general construction of such sets based on the Cartan decomposition of the group, which splits the group into its compact and non-compact components. The averaging over the compact part can be done in a uniform way, whereas the averaging over the non-compact one has to be endowed with a suppressing weight function, and can be approached using generalized Gauss quadratures. This leads us to the general form of finite averaging sets for semisimple matrix Lie groups in the product form of finite averaging sets with respect to the compact and non-compact parts. We provide an explicit calculation of such sets for the group S L ( 2 , C ) , although our construction can be applied to other cases. Possible applications of our results cover finding finite ensembles of random operations in quantum information science and quantum optics, which can be used in constructions of randomised quantum algorithms, including optical interferometric implementations.
The paper provides a first theoretical study on the effect of rotational Doppler on circularly polarized pulsed communication. Despite the circularly polarized communication being considered immune to signal fading due to rotary misalignment, such misalignment will cause a frequency-invariant phase-shift. This phase shift will significantly distort the shape of the time-domain pulse. The property can be used for integration of orientation sensing into well establish pulse-based localization. However, it has also the potential to distort communication for some pulse-modulated UWB systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.