Artificial intelligence (AI) techniques, such as machine learning (ML), are being developed and applied for the monitoring, tracking, and fault diagnosis of wind turbines. Current prediction systems are largely limited by their inherent disadvantages for wind turbines. For example, frequency or vibration analysis simulations at a part scale require a great deal of computational power and take considerable time, an aspect that can be essential and expensive in the case of a breakdown, especially if it is offshore. An integrated digital framework for wind turbine maintenance is proposed in this study. With this framework, predictions can be made both forward and backward, breaking down barriers between process variables and key attributes. Prediction accuracy in both directions is enhanced by process knowledge. An analysis of the complicated relationships between process parameters and process attributes is demonstrated in a case study based on a wind turbine prototype. Due to the harsh environments in which wind turbines operate, the proposed method should be very useful for supervising and diagnosing faults.
With the implementation of supervised machine learning techniques, wind turbine maintenance has been transformed. A wind turbine's electrical and mechanical components can be automatically identified, monitored, and detected to predict, detect, and anticipate their degeneration using this method of automatic and autonomous learning. Two different failure states are simulated due to bearing vibrations and compared with machine learning classifier and frequency analysis. A wind turbine can be monitored, monitored, and faulted efficiently by implementing SVM. With these technologies, downtime can be reduced, breakdowns can be anticipated, and aspects can be imported if they are offshore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.