Fractionation and elemental association of Zn, Cd, and Pb in soils near Zn mining areas were studied using a continuous-flow sequential extraction approach. The recently developed sequential extraction procedure not only gave fractional distribution data for evaluation of the mobility or potential environmental impact of the metals, but also the extraction profiles (extractograms) which were used for study of elemental association. In addition, the elemental atomic ratio plot extractogram can be used to demonstrate the degree of anthropogenic contamination. Seventy-nine soil samples were collected in the vicinity of a Zn mine and were fractionated into 4 phases i.e. exchangeable (F1), acid soluble (F2), reducible (F3) and oxidizable (F4) phases. Most samples were contaminated with Zn, Cd and Pb. The reducible phase is the most abundant fraction for Zn and Pb (>50%) while Cd is concentrated in the first 3 extraction steps. The distribution patterns of Cd were obviously affected by soil pH. 55% of Cd appears predominantly in the F1 fraction for acidic soils while in neutral and alkaline soils, it was mostly (70%) found in the F2 + F3 fractions. The extractograms obtained from the continuous-flow extraction system revealed close association between Zn, Cd, Pb and Fe in the acid soluble phase, Cd-Pb and Zn-Fe in the reducible phase for contaminated soils. A correlation study of the 3 metals using a correlation coefficient was also performed to compare the results with the elemental association revealed by the extractograms. Atomic ratio plot extractograms of Zn/Fe, Cd/Fe and Pb/Fe in the reducible phase, where contaminated metals are predominant, can be used to evaluate the degree of anthropogenic contamination. From the elemental atomic ratio plot, it is obvious that the contaminants Cd and Pb are mostly adsorbed on the surface of Fe oxides. Zn, which is present in an approximately 1 ratio 1 ratio with Fe in contaminated soils, does not show a similar trend to that found for Cd and Pb.
A continuous-flow system comprising a novel, custom-built extraction module and hyphenated with inductively coupled plasma-mass spectrometric (ICP-MS) detection is proposed for assessing metal mobilities and geochemical associations in soil compartments as based on using the three step BCR (now the Measurements and Testing Programme of the European Commission) sequential extraction scheme. Employing a peristaltic pump as liquid driver, alternate directional flows of the extractants are used to overcome compression of the solid particles within the extraction unit to ensure a steady partitioning flow rate and thus to maintain constant operationally defined extraction conditions. The proposed flow set-up is proven to allow for trouble-free handling of soil samples up to 1 g and flow rates < or =10 mL min(-1). The miniaturized extraction system was coupled to ICP-MS through a flow injection interface in order to discretely introduce appropriate extract volumes to the detector at a given time and with a given dilution factor. The proposed hyphenated method demonstrates excellent performance for on-line monitoring of major and trace elements (Ca, Mn, Fe, Ni, Pb, Zn and Cd) released when applying the various extracting reagents as addressed in the BCR scheme, that is, 0.11 M CH(3)COOH, 0.1 NH(2)OH.HCl and 30% H(2)O(2), even when a well recognized matrix-sensitive detector, such as ICP-MS, is used. As a result of the enhanced temporal resolution of the ongoing extraction, insights into the breaking down of phases and into the kinetics of the metal release are obtained. With the simultaneous multielement detection capability of ICP-MS, the dynamic fractionation system presents itself as an efficient front-end for evaluation of actual elemental association by interelement comparison of metals leached concurrently during the extraction time. Thus, the intimate elemental association between Cd and Zn in contaminated soils could be assessed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.