Microstructure influence on hydrogen trapping in a Cr-Mo type steels −2.25Cr 1Mo and 2.25Cr 1Mo 0.25V− was studied by means of electrochemical permeation test, thermal desorption spectrometry, scanning and transmission electron microscopy analysis. Both steels, used in hydrogenation reactors, in as received and artificial aged conditions exhibit a bainitic microstructure with CrxMoy and CrxMoyVz carbides finely dispersed. The hydrogen diffusivity for the 2.25Cr-1Mo-0.25V is lower than 2.25Cr-1Mo due to its higher carbide precipitation. At aged conditions TDS on samples cathodically charged with hydrogen showed an increase on the hydrogen trapping capacity for 2.25Cr-1Mo and a reduction for the vanadium modified steel, compared with the as-received state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.