We consider a discrete Schrödinger operator H=-Δ+V acting in ℓ2 (ℤd+1), with potential V supported by the subspace ℤd×{0}. We prove that σ (-Δ)=[-2 (d+1), 2(d+1)] is contained in the absolutely continuous spectrum of H. For this we develop a scattering theory for H. We emphasize the fact that this result applies to arbitrary potentials, so it depends on the structure of the problem rather than on a particular choice of the potential.
Using the conjugate operator method of Mourre we study the spectral theory of a class of unbounded Jacobi matrices. We especially focus on the case where the off-diagonal entries a n = n α (1 + o(1)) and diagonal ones b n = λn α (1 + o(1)) with α > 0, λ ∈ R.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.