Geodetic observations in the Turkana Depression of southern Ethiopia and northern Kenya constrain the kinematic relay of extension from a single rift in Ethiopia to parallel rifts in Kenya and Uganda. Global Position System stations in the region record approximately 4.7 mm/year of total eastward extension, consistent with the ITRF14 Euler pole for Nubia‐Somalia angular velocity. Extension is partitioned into high strain rates on localized structures and lower strain rates in areas of elevated topography, as across the Ethiopian Plateau. Where high topography is absent, extension is relayed between the Main Ethiopian Rift and the Eastern Rift across the Turkana Depression exclusively through localized extension on and immediately east of Lake Turkana (up to 0.2 microstrain/year across Lake Turkana). The observed scaling and location of active extension in the Turkana Depression are inconsistent with mechanical models predicting distributed stretching due to either inherited lithospheric weakness or reactivated structures oblique to the present‐day extension direction.
Fluorescent natural organic matter at tryptophan-like (TLF) and humic-like fluorescence (HLF) peaks is associated with the presence and enumeration of faecal indicator bacteria in groundwater. We hypothesise, however, that it is predominantly extracellular material that fluoresces at these wavelengths, not bacterial cells. We quantified total (unfiltered) and extracellular (filtered at < 0.22 µm) TLF and HLF in 140 groundwater sources across a range of urban population densities in Kenya, Malawi, Senegal, and Uganda. Where changes in fluorescence occurred following filtration they were correlated with potential controlling variables. A significant reduction in TLF following filtration (ΔTLF) was observed across the entire dataset, although the majority of the signal remained and thus considered extracellular (median 96.9%). ΔTLF was only significant in more urbanised study areas where TLF was greatest. Beneath Dakar, Senegal, ΔTLF was significantly correlated to total bacterial cells (ρs 0.51). No significant change in HLF following filtration across all data indicates these fluorophores are extracellular. Our results suggest that TLF and HLF are more mobile than faecal indicator bacteria and larger pathogens in groundwater, as the predominantly extracellular fluorophores are less prone to straining. Consequently, TLF/HLF are more precautionary indicators of microbial risks than faecal indicator bacteria in groundwater-derived drinking water.
This scenario is expected to escalate due to climate changes and increase in population (Carvalho Resende et al., 2018; Cassivi et al., 2018). It is with this vision that United Nation formulated Sustainable Development Goal number 6 that laid strategies for ensuring access to safe water by all by 2030(UN-Water, 2018; UNICEF, 2017). Surface water sources are slowly diminishing due to a myriad of factors that include climate variability, land use changes, increased demands by various sectors and urbanization(
Safe water of adequate quantity, and dignified sanitation, is vital for the sustenance of a healthy and productive human population. In the recognition of this, the United Nations formulated the Sustainable Development Goal No. 6 to ensure access to safe water and sanitation by all by 2030. Actualization of this Goal requires information on the existing status of water resources and sanitation levels. Knowledge on contamination of groundwater is essential to prevent risks to human health. The objective of this study was to determine groundwater contamination in Kisumu, Kenya. A total of 275 water samples were collected from 22 sites within the informal settlements between December 2016 and December 2017. The samples were analysed for bacterial contamination and physical chemical quality. Thermal tolerant coliform bacteria enumeration was used as a proxy to bacteria contamination, and the pH, turbidity, dissolved oxygen, conductivity, salinity and temperature were used as physical chemical indicators of contamination. The results indicate that groundwater in Kisumu hosed coliform bacteria and therefore didn't comply with contamination limits for domestic water proposed by WHO and local KEBS standards. The results further indicated that the levels of bacteriological contamination vary with water type, shallow well having the highest bacterial loads. The study concluded that there were potential risks to human health due to high content of coliform bacteria. The study attributed the contribution to pit latrines that were present in virtually all compounds. The pit latrines are located close to the water points. The study recommended the definition of minimum distance between the pit latrines and shallow wells to minimize contamination. The low income dwellers should be educated on sim
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.