Resumo: O principal objetivo da criptografia de dados é possibilitar que duas entidades se comuniquem ao longo de um canal inseguro, de tal forma que nenhuma outra entidade consiga decifrar a mensagem que é enviada. Muitos métodos de criptografia clássica já foram investigados para minimizar este problema. Uma nova abordagem para este tema são os Autômatos Celulares (ACs), atualmente estudados por sua capacidade de processar grandes volumes de dados em paralelo. Nesse trabalho é investigado um novo modelo de autômato celular para criptografia de imagens, que tem como característica o uso do cálculo de pré-imagens a partir de chaves caóticas. O modelo é denominado Border Chaotic Cellular Automata (BCCA) para cifragem. Resultados mostraram que o modelo tem grande potencial para a realização de cifragem de grandes volumes de dados.Palavras-chave: autômatos celulares, cálculo de pré-imagens, criptografia de imagens, processamento paralelo
Many hydro-meteorological disasters in small and steep watersheds develop quickly and significantly impact human lives and infrastructures. High-resolution rainfall data and machine learning methods have been used as modeling frameworks to predict those events, such as flash floods. However, a critical question remains: How long must the rainfall input data be for an empirical-based hydrological forecast? The present article employed an artificial neural network (ANN)hydrological model to address this issue to predict river levels and investigate its dependency on antecedent rainfall conditions. The tests were performed using observed water level data and high-resolution weather radar rainfall estimation over a small watershed in the mountainous region of Rio de Janeiro, Brazil. As a result, the forecast water level time series only archived a successful performance (i.e., Nash–Sutcliffe model efficiency coefficient (NSE) > 0.6) when data inputs considered at least 2 h of accumulated rainfall, suggesting a strong physical association to the watershed time of concentration. Under extended periods of accumulated rainfall (>12 h), the framework reached considerably higher performance levels (i.e., NSE > 0.85), which may be related to the ability of the ANN to capture the subsurface response as well as past soil moisture states in the watershed. Additionally, we investigated the model’s robustness, considering different seeds for random number generating, and spacial applicability, looking at maps of weights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.