This paper presents new experimental flow boiling pressure drop results in a microscale tube. The experimental data were obtained under diabatic conditions in a horizontal smooth tube with an internal diameter of 2.32 mm. Experiments were performed with R134a as working fluid, mass velocities ranging from 100 kg/m2 s to 600 kg/m2 s, heat flux ranging from 10 kW/m2 to 55 kW/m2, saturation temperatures of 31°C, and exit vapor qualities from 0.20 to 0.99. Flow pattern characterization was also performed from images obtained by high-speed filming. Pressure drop gradients up to 48 kPa/m were measured. These data were carefully analyzed and compared against 13 two-phase frictional pressure drop prediction methods, including both macro- and microscale methods. Comparisons against these methods based on the data segregated according to flow patterns were also performed. Overall, the method by Cioncolini et al. (2009, “Unified Macro-to-Microscale Method to Predict Two-Phase Frictional Pressure Drops of Annular Flows,” Int. J. Multiphase Flow, 35, pp. 1138–1148) provided quite accurate predictions of the present database.
Da SILVA, Jaqueline Diniz. Estudo teórico e experimental da transferência de calor durante a condensação e perda de pressão no interior de minicanais para os refrigerantes R1234ze(E) e R32 com reduzido GWP. 2017. 240 páginas. Tese
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.