A comparative study of Penicillium simplicissimum morphology and lipase production was performed using solid-state (SSF) and submerged (SmF) fermentation. SSF was carried out on babassu cake as culture medium and SmF on a semi-synthetic medium and a medium based on suspended babassu cake grains. Yield of product on biomass, specific activity and conidia production were 3.3-, 1.3- and 2-fold higher in SSF. In SmF, the type of fungus growth differed according to the medium. Using the semi-synthetic medium, the fungus formed densely interwoven mycelial masses without conidia production, whereas using the babassu-based medium the fungus formed free mycelia and adhered to the surfaces of the grains, producing conidia. The results show that babassu cake induces conidiation in SmF. In SSF, the fungus not only grew on the surface of the grains, producing conidia abundantly, but also effectively colonized and penetrated the babassu particles. The high conidia production and lipase productivity in SSF may be related to the low availability of nutrients or to other stimuli associated with this type of fermentation. Thus, the high production of the thermostable P. simplicissimum lipase, using a non-supplemented, low-cost agro-industrial residue as the culture medium, demonstrates the biotechnological potential of SSF for the production of industrial enzymes.
The present study aimed to add value to palm oil by-products as substrates to efficiently produce conidia of Beauveria bassiana and Isaria javanica (Hypocreales: Cordycipitaceae) for biological control of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae), through a solid-state fermentation process using palm kernel cake and palm fiber as nutrient source and solid matrix, respectively. The optimum culture conditions yielded high concentrations of viable conidia after air-drying, when the fungi were grown on palm kernel cake (B. bassiana 7.65 × 10 and I. javanica 2.91 × 10 conidia g dry substrate) after 6 days under optimal growth conditions set to 60% substrate moisture and 32 °C. Both fungal strains exhibited high efficacy against third-instar whitefly nymphs, inducing mortality up to 62.9 and 56.6% by B. bassiana and I. javanica, respectively, assessed after 9 days post-application in a screenhouse. Furthermore, we noted that insect mortality was strongly correlated with high atmospheric moisture, while B. bassiana appeared to require shorter accumulative hours under high moisture to kill whitefly nymphs compared to I. javanica. Our results underpin a feasible and cost-effective mass production method for aerial conidia, using palm kernel as the main substrate in order to produce efficacious fungal bioinsecticides against an invasive whitefly species in Brazil. Finally, our fermentation process may offer a sustainable and cost-effective means to produce eco-friendly mycoinsecticides, using an abundant agro-industrial by-product from Brazil that will ultimately assist in the integrated management of agricultural insect pests.
BACKGROUND: Microbial surfactants are multifunctional surface-active molecules that have been overlooked in formulating microbial biopesticides. We report a novel approach using the biosurfactant rhamnolipid (RML) against the destructive cosmopolitan insect pest Bemisia tabaci, as well as the combined action of RML with aerial conidia of two entomopathogenic fungi, Cordyceps javanica and Beauveria bassiana. RML was also tested as a suspension agent to improve the recovery rate of conidia from solid substrate for fungal preparations.
RESULTS:The recovery rate of conidia increased dramatically (two to five times) with RML compared with a standard surfactant (Tween 80). Spraying solutions of 0.075% and 0.1% (w/v) RML on B. tabaci third instar nymphs induced 100% mortality within 4 days. Conidial suspensions at 5 × 10 6 conidia/mL amended with RML at 0.01% or 0.05% markedly increased nymphal mortalities and considerably reduced LC 50 . Conidial suspensions of B. bassiana with 0.05% RML added were more effective against whitefly nymphs (87.3% mortality) than C. javanica + RML (51.4% mortality).
CONCLUSION:Our results show that this bacterium-based RML improved the recovery rate of hydrophobic conidia, and that mixtures of RML with fungal spore suspensions increased their insecticidal activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.