Fibroblast growth factor 2 (FGF2) is a well-known cell proliferation promoter; however, it can also induce cell cycle arrest. To gain insight into the molecular mechanisms of this antiproliferative effect, for the first time, the early systemic proteomic differences induced by this growth factor in a K-Ras-driven mouse tumor cell line using a quantitative proteomics approach are investigated. More than 2900 proteins are quantified, indicating that terms associated with metabolism, RNA processing, replication, and transcription are enriched among proteins differentially expressed upon FGF2 stimulation. Proteomic trend dynamics indicate that, for proteins mainly associated with DNA replication and carbohydrate metabolism, an FGF2 stimulus delays their abundance changes, whereas FGF2 stimulation accelerates other metabolic programs. Transcription regulatory network analysis indicates master regulators of FGF2 stimulation, including two critical transcription factors, FOSB and JUNB. Their expression dynamics, both in the Y1 cell line (a murine model of adenocarcinoma cells) and in two other human cell lines (SK-N-MC and UM-UC-3) also susceptible to FGF2 antiproliferative effects, are investigated. Both protein expression levels depend on fibroblast growth factor receptor (FGFR) and src signaling. JUNB and FOSB knockdown do not rescue cells from the growth arrest induced by FGF2; however, FOSB knockdown rescue cells from DNA replication delay, indicating that FOSB expression underlies one of the FGF2 antiproliferative effects, namely, S-phase progression delay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.