The aim of this study was to verify whether taxonomic and functional composition of stream fishes vary under three different preservation conditions of riparian zone: preserved (PRE), intermediate condition (INT), and degraded (DEG). Five stream stretches representing each condition were selected. Samples were taken from each stream in three occasions during the dry seasons from 2004 to 2007. Electro fishing (PRE and INT), sieves, dip nets, and hand seines (DEG) were used according to the characteristics of each sampled site. Overall, 46 species were registered. Differences in the taxonomic and functional species composition among groups were found, following the condition of riparian zones. The ichthyofauna recorded in the PRE was typical to pristine environments, consisting of species with specialized habits, notably benthic insectivores, intolerant, and rheophilics. In the INT group, replacement of riparian forest with shrubs and/or grasses created environmental conditions which favor the occurrence of tolerant species but also harbor a residual fauna of sensitive species. DEG streams presented mostly detritivores, tolerant, small sized fishes which occupy the surface and preferred slow water flux. Changes in the species composition were represented by the occurrence and dominance of tolerant species in detriment of the more sensitive and specialist species, following the gradient of degradation in the riparian zone. Forested streams act as unique habitats to many specialized species and it can be presumable that the degradation of riparian vegetation can generate biotic homogenization which may reduce species diversity and ecosystem services.O presente estudo verificou se a composição taxonômica e funcional de peixes de riachos varia ao longo de três condições de preservação da zona ripária: preservada (PRE), preservação intermediária (INT) e degradada (DEG). Cinco riachos de cada grupo foram selecionados e amostras foram obtidas em cada riacho em três ocasiões em períodos secos de 2004 a 2007. Pesca elétrica (PRE e INT), peneiras, puçás e redes de arrasto (DEG) foram usados de acordo com as características de cada local de coleta. No geral, 46 espécies foram registradas. Foram registradas diferenças na composição taxonômica e funcional de espécies entre os grupos, seguindo o gradiente de degradação da zona ripária. A ictiofauna encontrada em PRE foi típica de ambientes prístinos, consistindo em espécies de hábitos especializados, notavelmente bentônicas, insetívoras, intolerantes e reofílicas. No grupo INT, a substituição da floresta ripária por herbáceas ou gramíneas cria condições ambientais que favorecem a ocorrência de espécies tolerantes, mas também abriga uma fauna residual de espécies sensíveis. O grupo DEG foi representado principalmente por espécies detritívoras, tolerantes e de superfície. As modificações na composição de espécies foram representadas pela ocorrência e dominância de espécies tolerantes em detrimento da redução/eliminação daquelas mais sensíveis e especializadas, acompanhando o grad...
In this study, we investigated the influence of environmental variables (predictor variables) on the species richness, species diversity, functional diversity, and functional redundancy (response variables) of stream fish assemblages in an agroecosystem that harbor a gradient of degradation. We hypothesized that, despite presenting high richness or diversity in some occasions, fish communities will be more functionally redundant with stream degradation. Species richness, species diversity, and functional redundancy were predicted by the percentage of grass on the banks, which is a characteristic that indicates degraded conditions, whereas the percentage of coarse substrate in the stream bottom was an important predictor of all response variables and indicates more preserved conditions. Despite being more numerous and diverse, the groups of species living in streams with an abundance of grass on the banks perform similar functions in the ecosystem. We found that riparian and watershed land use had low predictive power in comparison to the instream habitat. If there is any interest in promoting ecosystem functions and fish diversity, conservation strategies should seek to restore forests in watersheds and riparian buffers, protect instream habitats from siltation, provide wood debris, and mitigate the proliferation of grass on stream banks. Such actions will work better if they are planned together with good farming practices because these basins will continue to be used for agriculture and livestock in the future.
Motivation: We compiled a global database of long-term riverine fish surveys from 46 regional and national monitoring programmes and from individual academic research efforts, with which numerous basic and applied questions in ecology and global change research can be explored. Such spatially and temporally extensive datasets have been lacking for freshwater systems in comparison to terrestrial ones. Main types of variables contained: The database includes 11,386 time-series of riverine fish community catch data, including 646,270 species-specific abundance records, together with metadata related to the geographical location and sampling methodology of each time-series. Spatial location and grain: The database contains 11,072 unique sampling locations (stream reach), spanning 19 countries, five biogeographical realms and 402 hydrographical basins worldwide. Time period and grain: The database encompasses the period 1951-2019. Each timeseries is composed of a minimum of two yearly surveys (mean = 8 years) and represents a minimum time span of 10 years (mean = 19 years). Major taxa and level of measurement: The database includes 944 species of rayfinned fishes (Class Actinopterygii). Software format: csv. Main conclusion: Our collective effort provides the most comprehensive long-term community database of riverine fishes to date. This unique database should interest ecologists who seek to understand the impacts of human activities on riverine fish biodiversity and to model and predict how fish communities will respond to future environmental change. Together, we hope it will promote advances in macroecological research in the freshwater realm.
A multi‐faceted assessment of diversity is needed to improve our understanding of the mechanisms underlying biodiversity patterns and to reveal the impacts of land use alterations on β‐diversity. In this study, we analysed stream fish β‐diversity based on taxonomic, functional, and phylogenetic facets in an intensively cultivated tropical region. We sampled 43 stream reaches in the northwest of São Paulo State, south‐eastern Brazil. Each sampling site was characterised according to catchment‐scale features, landscape dynamic indicators, local‐scale features, and distance between stream reaches as network distance (a proxy for dispersal processes). As response variables, we considered taxonomic, functional, and phylogenetic β‐diversities coupled with a null‐model approach. For each β‐diversity metric, we calculated the mean overall value and tested whether the mean value was different from that expected by chance. To examine variation in β‐diversity for the three facets and determine the relative contributions of predictor variables, we used a distance‐based approach. Taxonomic and functional β‐diversities were higher from the expected value under a null model, suggesting that community assembly of these facets was dominated by deterministic processes. In contrast, phylogenetic β‐diversity was not different from that expected by chance, suggesting that the lineage composition of these assemblages was random. Furthermore, for all three facets, there was a positive environment‐β‐diversity relationship that was determined primarily by local‐scale features, whereas catchment features and landscape dynamic indicators were not important. In addition, none of the β‐diversity facets was correlated with stream network distance, indicating that dispersal processes were not strongly structuring fish assemblages. Our study suggested that although multiple facets of stream fish β‐diversity are ruled mainly by deterministic processes (e.g. species sorting), stochasticity is also important in community assembly. An interesting finding was the mismatch between phylogenetic versus taxonomic and functional β‐diversity. It is likely that the lack of non‐random structure in phylogenetic β‐diversity is due to the variation of phylogenetic signal in some functional traits. Given that landscape dynamic indicators were not correlated with measures of β‐diversity, we suggest that the recent sugarcane expansion in our study area probably has not critically affected stream fish β‐diversity. Also, it is possible that catchment variables presented little variability and did not overwhelm the effect of local environmental variables on β‐diversity. In conclusion, our study suggests that even highly disturbed tropical agroecosystems with a pool of species that is probably decimated, can still display a relatively high β‐diversity determined mainly by species sorting. These findings suggest key environmental features that must be considered in restoration or conservation of β‐diversity in agroecosystems. Specifically, since variation i...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.