The design of efficient food contact materials that maintain optimal levels of food safety is of paramount relevance to reduce the increasing foodborne illnesses. In this work, we develop a smart composite MOF-based material that fosters a unique prolonged antibacterial activity. The composite is obtained by entrapping a natural preserving food molecule, carvacrol, into the mesoporous MIL-100(Fe) material following a direct and biocompatible impregnation method and obtaining particularly high payloads. By exploiting the intrinsic redox nature of MIL-100(Fe) material it is possible to achieve a prolonged activity against E. coli bacteria due to a triggered two-step carvacrol release of films containing the carvacrol@MOF composite. Essentially, it was discovered that based on the underlying chemical interaction among MIL-100(Fe) and carvacrol, it is possible to undergo a reversible charge transfer process between the metallic MOF counterpart and the carvacrol upon certain physical stimuli. During this process, the preferred carvacrol binding site has been monitored by IR, Mössbauer and EPR spectroscopies and is supported by theoretical calculations.
The design of efficient food contact materials that maintain optimal levels of food safety is of paramount relevance to reduce the increasing foodborne illnesses. In this work, we develop a smart composite MOF-based material that fosters a unique prolonged antibacterial activity. The composite is obtained by entrapping a natural preserving food molecule, carvacrol, into the mesoporous MIL-100(Fe) material following a direct and biocompatible impregnation method and obtaining particularly high payloads. By exploiting the intrinsic redox nature of MIL-100(Fe) material it is possible to achieve a prolonged activity against E. coli bacteria due to a triggered two-step carvacrol release of films containing the carvacrol@MOF composite. Essentially, it was discovered that based on the underlying chemical interaction among MIL-100(Fe) and carvacrol, it is possible to undergo a reversible charge transfer process between the metallic MOF counterpart and the carvacrol upon certain physical stimuli. During this process, the preferred carvacrol binding site has been monitored by IR, Mössbauer and EPR spectroscopies and is supported by theoretical calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.