Lung disease is one of the most harmful diseases in traditional days and is the same nowadays. Early detection is one of the most crucial ways to prevent a human from developing these types of diseases. Many researchers are involved in finding various techniques for predicting the accuracy of the diseases. On the basis of the machine learning algorithm, it was not possible to predict the better accuracy when compared to the deep learning technique; this work has proposed enhanced artificial neural network approaches for the accuracy of lung diseases. Here, the discrete Fourier transform and the Burg auto-regression techniques are used for extracting the computed tomography (CT) scan images, and feature reduction takes place by using principle component analysis (PCA). This proposed work has used the 120 subjective datasets from public landmarks with and without lung diseases. The given dataset is trained by using an enhanced artificial neural network (ANN). The preprocessing techniques are handled by using a Gaussian filter; thus, our proposed approach provides enhanced classification accuracy. Finally, our proposed method is compared with the existing machine learning approach based on its accuracy.
Diabetes problems can lead to a condition called diabetic retinopathy (DR), which permanently damages the blood vessels in the retina. If not treated, DR is a significant cause of blindness. The only DR treatments currently accessible are those that block or delay vision loss, which emphasizes the value of routine scanning with high-efficiency computer-based technologies to identify patients early. The major goal of this study is to employ a deep learning neural network to identify diabetic retinopathy in the retina’s blood vessels. The NN classifier is put to the test using the input fundus image and DR database. It effectively contrasts retinal images and distinguishes between classes when there is a legitimate edge. For the resolution of the problems in the photographs, it is particularly useful. Here, it will be tested to see if the classification of diabetic retinopathy is normal or abnormal. Modifying the existing study’s conclusion strategy, existing diabetic retinopathy techniques have sensitivity, specificity, and accuracy levels that are much lower than what is required for this research.
Competitive intelligence in social media analytics has significantly influenced behavioral finance worldwide in recent years; it is continuously emerging with a high growth rate of unpredicted variables per week. Several surveys in this large field have proved how social media involvement has made a trackless network using machine learning techniques through web applications and Android modes using interoperability. This article proposes an improved social media sentiment analytics technique to predict the individual state of mind of social media users and the ability of users to resist profound effects. The proposed estimation function tracks the counts of the aversion and satisfaction levels of each inter- and intra-linked expression. It tracks down more than one ontologically linked activity from different social media platforms with a high average success rate of 99.71%. The accuracy of the proposed solution is 97% satisfactory, which could be effectively considered in various industrial solutions such as emo-robot building, patient analysis and activity tracking, elderly care, and so on.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.