Venue recommendation systems aim to effectively rank a list of interesting venues users should visit based on their historical feedback (e.g. checkins). Such systems are increasingly deployed by Locationbased Social Networks (LBSNs) such as Foursquare and Yelp to enhance their usefulness to users. Recently, various RNN architectures have been proposed to incorporate contextual information associated with the users' sequence of checkins (e.g. time of the day, location of venues) to effectively capture the users' dynamic preferences. However, these architectures assume that different types of contexts have an identical impact on the users' preferences, which may not hold in practice. For example, an ordinary contextsuch as the time of the day-reflects the user's current contextual preferences, whereas a transition context-such as a time interval from their last visited venue-indicates a transition effect from past behaviour to future behaviour. To address these challenges, we propose a novel Contextual Attention Recurrent Architecture (CARA) that leverages both sequences of feedback and contextual information associated with the sequences to capture the users' dynamic preferences. Our proposed recurrent architecture consists of two types of gating mechanisms, namely 1) a contextual attention gate that controls the influence of the ordinary context on the users' contextual preferences and 2) a time-and geo-based gate that controls the influence of the hidden state from the previous checkin based on the transition context. Thorough experiments on three large checkin and rating datasets from commercial LBSNs demonstrate the effectiveness of our proposed CARA architecture by significantly outperforming many state-of-the-art RNN architectures and factorisation approaches.
Venue recommendation is an important application for LocationBased Social Networks (LBSNs), such as Yelp, and has been extensively studied in recent years. Matrix Factorisation (MF) is a popular Collaborative Filtering (CF) technique that can suggest relevant venues to users based on an assumption that similar users are likely to visit similar venues. In recent years, deep neural networks have been successfully applied to tasks such as speech recognition, computer vision and natural language processing. Building upon this momentum, various approaches for recommendation have been proposed in the literature to enhance the e ectiveness of MF-based approaches by exploiting neural network models such as: word embeddings to incorporate auxiliary information (e.g. textual content of comments); and Recurrent Neural Networks (RNN) to capture sequential properties of observed user-venue interactions. However, such approaches rely on the traditional inner product of the latent factors of users and venues to capture the concept of collaborative ltering, which may not be su cient to capture the complex structure of user-venue interactions. In this paper, we propose a Deep Recurrent Collaborative Filtering framework (DRCF) with a pairwise ranking function that aims to capture user-venue interactions in a CF manner from sequences of observed feedback by leveraging Multi-Layer Perception and Recurrent Neural Network architectures. Our proposed framework consists of two components: namely Generalised Recurrent Matrix Factorisation (GRMF) and Multi-Level Recurrent Perceptron (MLRP) models. In particular, GRMF and MLRP learn to model complex structures of user-venue interactions using element-wise and dot products as well as the concatenation of latent factors. In addition, we propose a novel sequence-based negative sampling approach that accounts for the sequential properties of observed feedback and geographical location of venues to enhance the quality of venue suggestions, as well as alleviate the cold-start users problem. Experiments on three large checkin and rating datasets show the e ectiveness of our proposed framework by outperforming various state-of-the-art approaches.
Venue recommendation is an important capability of LocationBased Social Networks such as Yelp and Foursquare. Matrix Factorisation (MF) is a collaborative filtering-based approach that can effectively recommend venues that are relevant to the users' preferences, by training upon either implicit or explicit feedbacks (e.g. check-ins or venue ratings) that these users express about venues. However, MF suffers in that users may only have rated very few venues. To alleviate this problem, recent literature have leveraged additional sources of evidence, e.g. using users' social friendships to reduce the complexity of -or regularise -the MF model, or identifying similar venues based on their comments. This paper argues for a combined regularisation model, where the venues suggested for a user are influenced by friends with similar tastes (as defined by their comments). We propose a MF regularisation technique that seamlessly incorporates both social network information and textual comments, by exploiting word embeddings to estimate a semantic similarity of friends based on their explicit textual feedback, to regularise the complexity of the factorised model. Experiments on a large existing dataset demonstrate that our proposed regularisation model is promising, and can enhance the prediction accuracy of several state-of-the-art matrix factorisation-based approaches.
An indispensable component in task-oriented dialogue systems is the dialogue state tracker, which keeps track of users' intentions in the course of conversation. The typical approach towards this goal is to fill in multiple pre-defined slots that are essential to complete the task. Although various dialogue state tracking methods have been proposed in recent years, most of them predict the value of each slot separately and fail to consider the correlations among slots. In this paper, we propose a slot self-attention mechanism that can learn the slot correlations automatically. Specifically, a slottoken attention is first utilized to obtain slot-specific features from the dialogue context. Then a stacked slot self-attention is applied on these features to learn the correlations among slots. We conduct comprehensive experiments on two multi-domain task-oriented dialogue datasets, including MultiWOZ 2.0 and MultiWOZ 2.1. The experimental results demonstrate that our approach achieves stateof-the-art performance on both datasets, verifying the necessity and effectiveness of taking slot correlations into consideration.
Recommending a ranked list of interesting venues to users based on their preferences has become a key functionality in LocationBased Social Networks (LBSNs) such as Yelp and Gowalla. Bayesian Personalised Ranking (BPR) is a popular pairwise recommendation technique that is used to generate the ranked list of venues of interest to a user, by leveraging the user's implicit feedback such as their check-ins as instances of positive feedback, while randomly sampling other venues as negative instances. To alleviate the sparsity that a ects the usefulness of recommendations by BPR for users with few check-ins, various approaches have been proposed in the literature to incorporate additional sources of information such as the social links between users, the textual content of comments, as well as the geographical location of the venues. However, such approaches can only readily leverage one source of additional information for negative sampling. Instead, we propose a novel Personalised Ranking Framework with Multiple sampling Criteria (PRFMC) that leverages both geographical in uence and social correlation to enhance the e ectiveness of BPR. In particular, we apply a multi-centre Gaussian model and a power-law distribution method, to capture geographical in uence and social correlation when sampling negative venues, respectively. Finally, we conduct comprehensive experiments using three large-scale datasets from the Yelp, Gowalla and Brightkite LBSNs. e experimental results demonstrate the e ectiveness of fusing both geographical in uence and social correlation in our proposed PRFMC framework and its superiority in comparison to BPR-based and other similar ranking approaches. Indeed, our PRFMC approach a ains a 37% improvement in MRR over a recently proposed approach that identi es negative venues only from social links.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.