This literature review has critically analyzed the published research related to the biomechanical preparation of root canals with three-dimensional analysis using micro-computed tomography (micro-CT). In December 2017, six databases (PubMed, Cochrane, Web of Science, Embase, Scopus, and Science Direct) were accessed using keywords to find articles including the use of the micro-CT analysis in biomechanical root canal preparation. There were 60 full articles that were selected, which were screened and read by two authors. The research that was reviewed and analyzed included root canal anatomy and sample selection, changes in canal shape and untouched canal areas, canal transportation and centering ability, and kinematics (motion). Of the studies selected, 49.18% discussed anatomical characteristics, with 54.1% of these studies describing mesial roots of mandibular molars with moderate curvature. Only 35% used a stratified distribution based on root canal system morphology and quantitative data obtained by micro-CT. The analysis of canal transportation and centering ability showed that transport values in the apical third exceeded the critical limit of 0.3 mm in mesial roots of mandibular molars with moderate curvature, especially in the groups in which a reciprocating system was used. In relation to kinematics, 91.70% of the reviewed studies evaluated continuous rotating instruments, followed by reciprocating rotation (38.33%), vibratory (15%), and the adaptive kinematics, which was in only 8.33%. The reciprocating kinematics was associated with higher canal decentralization and transportation indexes, as well as a greater capacity for dentin removal and debris accumulation. This literature review showed that the anatomy, the type of design and kinematics of instruments, and the experimental design are factors that directly influence the quality of biomechanical preparation of root canals analyzed in a qualitative and quantitative manner by micro-CT.
To assess the physicochemical properties of AH Plus, GuttaFlow 2, GuttaFlow BioSeal, and MM Seal, five samples of each root canal sealer were evaluated to determine their setting time (ST), dimensional change (DC), solubility (SL), flow (FL), and radiopacity (RD) according to American National Standards Institute/American Dental Association (ANSI/ADA) Specification 57. The distilled and deionized water obtained from the SL test were subjected to atomic absorption spectrometry to observe the presence of Ca , and RD (mmAl) (AH Plus 7.52 ± 1.59; GuttaFlow 2 6.85 ± 0.14; GuttaFlow Bioseal 7.02 ± 0.18; MM Seal 3.32 ± 0.90). ST, DC, SL, FL, and RD showed statistical differences among the root canal sealers (p < 0.05). As AH Plus showed the lowest DC and SL values (p < 0.05), the findings indicate that this sample is the only sealer conforming to ANSI/ADA standards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.