Abstract. Given two measurable spaces H and D with countably generated σ-algebras, a perfect prior probability measure P H on H and a sampling distribution S : H → D, there is a corresponding inference map I : D → H which is unique up to a set of measure zero. Thus, given a data measurement µ : 1 → D, a posterior probability P H = I • µ can be computed. This procedure is iterative: with each updated probability P H , we obtain a new joint distribution which in turn yields a new inference map I and the process repeats with each additional measurement. The main result uses an existence theorem for regular conditional probabilities by Faden, which holds in more generality than the setting of Polish spaces. This less stringent setting then allows for non-trivial decision rules (Eilenberg-Moore algebras) on finite (as well as non finite) spaces, and also provides for a common framework for decision theory and Bayesian probability.
We prove several results about chordal graphs and weighted chordal graphs by focusing on exposed edges. These are edges that are properly contained in a single maximal complete subgraph. This leads to a characterization of chordal graphs via deletions of a sequence of exposed edges from a complete graph. Most interesting is that in this context the connected components of the edge-induced subgraph of exposed edges are 2-edge connected. We use this latter fact in the weighted case to give a modified version of Kruskal's second algorithm for finding a minimum spanning tree in a weighted chordal graph. This modified algorithm benefits from being local in an important sense.
We examine overlapping clustering schemes with functorial constraints, in the spirit of Carlsson-Mémoli. This avoids issues arising from the chaining required by partition-based methods. Our principal result shows that any clustering functor is naturally constrained to refine single-linkage clusters and be refined by maximal-linkage clusters. We work in the context of metric spaces with non-expansive maps, which is appropriate for modeling data processing which does not increase information content.
No abstract
This work draws inspiration from three important sources of research on dissimilarity-based clustering and intertwines those three threads into a consistent principled functorial theory of clustering. Those three are the overlapping clustering of Jardine and Sibson, the functorial approach of Carlsson and Mémoli to partition-based clustering, and the Isbell/Dress school's study of injective envelopes. Carlsson and Mémoli introduce the idea of viewing clustering methods as functors from a category of metric spaces to a category of clusters, with functoriality subsuming many desirable properties. Our first series of results extends their theory of functorial clustering schemes to methods that allow overlapping clusters in the spirit of Jardine and Sibson. This obviates some of the unpleasant effects of chaining that occur, for example with single-linkage clustering. We prove an equivalence between these general overlapping clustering functors and projections of weight spaces to what we term clustering domains, by focusing on the order structure determined by the morphisms. As a specific application of this machinery, we are able to prove that there are no functorial projections to cut metrics, or even to tree metrics. Finally, although we focus less on the construction of clustering methods (clustering domains) derived from injective envelopes, we lay out some preliminary results, that hopefully will give a feel for how the third leg of the stool comes into play.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.