Novel tuberculosis vaccines are in varying stages of pre-clinical and clinical development. This study seeks to estimate the potential cost-effectiveness of a BCG booster vaccine, while accounting for costs of large-scale clinical trials, using the MVA85A vaccine as a case study for estimating potential costs. We conducted a decision analysis from the societal perspective, using a 10-year time frame and a 3% discount rate. We predicted active tuberculosis cases and tuberculosis-related costs for a hypothetical cohort of 960,763 South African newborns (total born in 2009). We compared neonatal vaccination with bacille Calmette-Guérin alone to vaccination with bacille Calmette-Guérin plus a booster vaccine at 4 months. We considered booster efficacy estimates ranging from 40% to 70%, relative to bacille Calmette-Guérin alone. We accounted for the costs of Phase III clinical trials. The booster vaccine was assumed to prevent progression to active tuberculosis after childhood infection, with protection decreasing linearly over 10 years. Trial costs were prorated to South Africa's global share of bacille Calmette-Guérin vaccination. Vaccination with bacille Calmette-Guérin alone resulted in estimated tuberculosis-related costs of $89.91 million 2012 USD, and 13,610 tuberculosis cases in the birth cohort, over the 10 years. Addition of the booster resulted in estimated cost savings of $7.69–$16.68 million USD, and 2,800–4,160 cases averted, for assumed efficacy values ranging from 40%–70%. A booster tuberculosis vaccine in infancy may result in net societal cost savings as well as fewer active tuberculosis cases, even if efficacy is relatively modest and large scale Phase III studies are required.
Background Chlamydia trachomatis is the most common bacterial sexually transmitted infection (STI) in the United States (U.S.) [1] and remains a major public health problem. We determined the cost- benefit of screening all pregnant women aged 15–24 for Chlamydia trachomatis infection compared with no screening.MethodsWe developed a decision analysis model to estimate costs and health-related effects of screening pregnant women for C. trachomatis in a high burden setting (Brooklyn, NY). Outcome data was from literature for pregnant women in the 2015 US population. A virtual cohort of 6,444,686 pregnant women, followed for 1 year was utilized. Using outcomes data from the literature, we predicted the number of C. trachomatis cases, associated morbidity, and related costs. Two comparison arms were developed: pregnant women who received chlamydia screening, and those who did not. Costs and morbidity of a pregnant woman-infant pair with C. trachomatis were calculated and compared.ResultsCost and benefit of screening relied on the prevalence of C. trachomatis; when rates are above 16.9%, screening was proven to offer net cost savings. At a pre-screening era prevalence of 8%, a screening program has an increased expense of $124.65 million ($19.34/individual), with 328 thousand more cases of chlamydia treated, and significant reduction in morbidity. At a current estimate of prevalence, 6.7%, net expenditure for screening is $249.08 million ($38.65/individual), with 204.63 thousand cases of treated chlamydia and reduced morbidity.ConclusionsConsidering a high prevalence region, prenatal screening for C. trachomatis resulted in increased expenditure, with a significant reduction in morbidity to woman-infant pairs. Screening programs are appropriate if the cost per individual is deemed acceptable to prevent the morbidity associated with C. trachomatis.
Chlamydia trachomatis infections during pregnancy may have serious consequences for women and their offspring. Chlamydial infections are largely asymptomatic. Hence, prevention is based on screening. The objective of this study was to estimate the cost-effectiveness of C. trachomatis screening during pregnancy. We used a health-economic decision analysis model, which included potential health outcomes of C. trachomatis infection for women, partners and infants, and premature delivery. We estimated the cost-effectiveness from a societal perspective using recent prevalence data from a population-based prospective cohort study among pregnant women in the Netherlands. We calculated the averted costs by linking health outcomes with health care costs and productivity losses. Cost-effectiveness was expressed as net costs per major outcome prevented and was estimated in base-case analysis, sensitivity, and scenario analysis. In the base-case analysis, the costs to detect 1000 pregnant women with C. trachomatis were estimated at €527,900. Prevention of adverse health outcomes averted €626,800 in medical costs, resulting in net cost savings. Sensitivity analysis showed that net cost savings remained with test costs up to €22 (test price €19) for a broad range of variation in underlying assumptions. Scenario analysis showed even more cost savings with targeted screening for women less than 30 years of age or with first pregnancies only. Antenatal screening for C. trachomatis is a cost-saving intervention when testing all pregnant women in the Netherlands. Savings increase even further when testing women younger than 30 years of age or with pregnancies only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.