HIV-1 Tat transactivation is vital for completion of the viral life cycle and has been implicated in determining proviral latency. We present an extensive experimental/computational study of an HIV-1 model vector (LTR-GFP-IRES-Tat) and show that stochastic fluctuations in Tat influence the viral latency decision. Low GFP/Tat expression was found to generate bifurcating phenotypes with clonal populations derived from single proviral integrations simultaneously exhibiting very high and near zero GFP expression. Although phenotypic bifurcation (PheB) was correlated with distinct genomic integration patterns, neither these patterns nor other extrinsic cellular factors (cell cycle/size, aneuploidy, chromatin silencing, etc.) explained PheB. Stochastic computational modeling successfully accounted for PheB and correctly predicted the dynamics of a Tat mutant that were subsequently confirmed by experiment. Thus, Tat stochastics appear sufficient to generate PheB (and potentially proviral latency), illustrating the importance of stochastic fluctuations in gene expression in a mammalian system.
Summary Phase transitions driven by intrinsically disordered protein regions (IDRs) have emerged as a ubiquitous mechanism for assembling liquid-like RNA/protein (RNP) bodies and other membrane-less organelles. However, a lack of tools to control intracellular phase transitions limits our ability to understand their role in cell physiology and disease. Here, we introduce an optogenetic platform, which uses light to activate IDR-mediated phase transitions in living cells. We use this “optoDroplet” system to study condensed phases driven by the IDRs of various RNP body proteins, including FUS, DDX4, and HNRNPA1. Above a concentration threshold, these constructs undergo light-activated phase separation, forming spatiotemporally-definable liquid optoDroplets. FUS optoDroplet assembly is fully reversible even after multiple activation cycles. However, cells driven deep within the phase boundary form solid-like gels, which undergo aging into irreversible aggregates. This system can thus elucidate not only physiological phase transitions, but also their link to pathological aggregates.
SUMMARY The complex, interconnected architecture of cell-signaling networks makes it challenging to disentangle how cells process extracellular information to make decisions. We have developed an optogenetic approach to selectively activate isolated intracellular signaling nodes with light and use this method to follow the flow of information from the signaling protein Ras. By measuring dose and frequency responses in single cells, we characterize the precision, timing, and efficiency with which signals are transmitted from Ras to Erk. Moreover, we elucidate how a single pathway can specify distinct physiological outcomes: by combining distinct temporal patterns of stimulation with proteomic profiling, we identify signaling programs that differentially respond to Ras dynamics, including a paracrine circuit that activates STAT3 only after persistent (>1 hr) Ras activation. Optogenetic stimulation provides a powerful tool for analyzing the intrinsic transmission properties of pathway modules and identifying how they dynamically encode distinct outcomes.
The optimization of engineered metabolic pathways requires careful control over the levels and timing of metabolic enzyme expression1-4. Optogenetic tools are ideal for achieving such precise control, as light can be applied and removed instantly without complex media changes. Here we show that light-controlled transcription can be used to enhance the biosynthesis of valuable products in engineered Saccharomyces cerevisiae. We introduce new optogenetic circuits to shift cells from a light-induced growth phase to a darkness-induced production phase, which allows us to control fermentation purely with light. Furthermore, optogenetic control of engineered pathways enables a new mode of bioreactor operation using periodic light pulses to tune enzyme expression during the production phase of fermentation to increase yields. Using these advances, we control the mitochondrial isobutanol pathway to produce up to 8.49 ± 0.31 g/L of isobutanol and 2.38 ± 0.06 g/L of 2-methyl-1-butanol micro-aerobically from glucose. These results make a compelling case for the application of optogenetics to metabolic engineering for valuable products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.