Abstract-The success of personal service robotics hinges upon reliable manipulation of everyday household objects, such as dishes, bottles, containers, and furniture. In order to accurately manipulate such objects, robots need to know objects' full 6-DOF pose, which is made difficult by clutter and occlusions. Many household objects have regular structure that can be used to effectively guess object pose given an observation of just a small patch on the object. In this paper, we present a new method to model the spatial distribution of oriented local features on an object, which we use to infer object pose given small sets of observed local features. The orientation distribution for local features is given by a mixture of Binghams on the hypersphere of unit quaternions, while the local feature distribution for position given orientation is given by a locally-weighted (Quaternion kernel) likelihood. Experiments on 3D point cloud data of cluttered and uncluttered scenes generated from a structured light stereo image sensor validate our approach.
A new system for object detection in cluttered RGB-D images is presented. Our main contribution is a new method called Bingham Procrustean Alignment (BPA) to align models with the scene. BPA uses point correspondences between oriented features to derive a probability distribution over possible model poses. The orientation component of this distribution, conditioned on the position, is shown to be a Bingham distribution. This result also applies to the classic problem of least-squares alignment of point sets, when point features are orientation-less, and gives a principled, probabilistic way to measure pose uncertainty in the rigid alignment problem. Our detection system leverages BPA to achieve more reliable object detections in clutter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.