Fire is an important determinant of habitat structure and biodiversity across ecosystems worldwide. In fire-dependent communities, similar to the North American prairie, fire suppression contributes to local plant extinctions. Yet the demographic mechanisms responsible for species loss have not been directly investigated. We conducted a 21-y longitudinal study of 778 individual plants of Echinacea angustifolia, a widespread perennial species with chronically limited mating opportunities, to explore how fire affects reproduction. In a large preserve, with management units on different burn schedules, we investigated Echinacea mating scenes, which quantify isolation from potential mates and overlap in the timing of flowering, to determine the extent to which fire influences the potential for sexual reproduction. We demonstrate that fire consistently increased mating opportunities by synchronizing reproductive effort. Each fire occurred during fall or spring and stimulated flowering in the subsequent summer, thus synchronizing reproduction among years and increasing the proximity of potential mates after a fire. Greater within-season flowering synchrony in postfire mating scenes further increased mating potential. The improved postfire mating scene enhanced reproduction by increasing pollination efficiency. Seed set in scenes postfire exceeded other scenes by 55%, and annual fecundity nearly doubled (88% increase). We predict the reproductive benefits of synchronized flowering after fire can alleviate mate-finding Allee effects, promote population growth, and forestall local extirpation in small populations of Echinacea and many other prairie species. Furthermore, the synchronization of flowering by burning may improve mating opportunities, reproduction, and the likelihood of persistence for many other plant species in fire-dependent habitats.
Maintaining native biodiversity in grasslands requires management and mitigation of anthropogenic changes that have altered resource availability, grazing regimes, and community composition. In California (USA), high levels of atmospheric nitrogen (N) deposition have facilitated the invasion of exotic grasses, posing a threat to the diverse plant and insect communities endemic to serpentine grasslands. Cattle grazing has been employed to mitigate the consequences of exotic grass invasion, but the ecological effects of grazing in this system are not fully understood. To characterize the effects of realistic N deposition on serpentine plant communities and to evaluate the efficacy of grazing as a management tool, we performed a factorial experiment adding N and excluding large herbivores in California's largest serpentine grassland. Although we observed significant interannual variation in community composition related to climate in our six-year study, exotic cover was consistently and negatively correlated with native plant richness. Sustained low-level N addition did not influence plant community composition, but grazing reduced grass abundance while maintaining greater native forb cover, native plant diversity, and species richness in comparison to plots excluding large herbivores. Furthermore, grazing increased the temporal stability of plant communities by decreasing year-to-year variation in native forb cover, native plant diversity, and native species richness. Taken together, our findings demonstrate that moderate-intensity cattle grazing can be used to restrict the invasive potential of exotic grasses and maintain native plant communities in serpentine grasslands. We hypothesize that the reduced temporal variability in serpentine plant communities managed by grazing may directly benefit populations of the threatened Edith's Bay checkerspot butterfly (Euphydryas editha bayensis).
Ecologists rely on field surveys to monitor long‐term ecological change but finite sampling and the prevalence of rare species mean that surveys inevitably miss some species present at a given location. These ‘phantom species’ produce pseudo‐turnover by inflating observed rates of local colonization and extinction in resurvey studies, especially among rare species. In this paper, we quantify the probability that pseudo‐turnover occurs due to imprecise plot relocation and/or shifts in where individuals are located. Using sampling models derived from the binomial distribution, we estimate probabilities of missing species as a function of local abundance and sampling intensity. Spatially explicit simulations confirm that our binomial model is robust to non‐random sampling schemes and clumped species distributions. False absences decline predictably as species abundance and sampling intensity increase allowing us to statistically adjust naïve estimates of colonization and extinction for expected rates of pseudo‐turnover. To illustrate the model's real‐world utility, we analyze apparent colonizations and extinctions for 331 species distributed over 83 sites in southern Wisconsin forests surveyed in both the 1950s and 2000s. Limited sampling in the 1950s means expected rates of pseudo‐colonization are appreciable. Accounting for pseudo‐turnover thus reduces estimated community‐wide colonization rates by 51% compared to naïve (observed) rates. More complete sampling in the 2000s limited overestimates of local extinction to 14%. We distinguish three zones of inference based on sampling intensity and species abundance where: 1) naïve estimates approximate true values of turnover, 2) adjustments are important, and 3) species are too rare relative to sampling to reliably infer turnover. Accounting for phantom species substantially improves our ability to accurately estimate local colonization and extinction rates, enhancing our ability to infer community dynamics and monitor long‐term ecological change.
Premise Fire induces flowering in many plant species worldwide, potentially improving reproductive fitness via greater availability of resources, as evident by flowering effort, and improved pollination outcomes, as evident by seed set. Postfire increases in flowering synchrony, and thus mating opportunities, may improve pollination. However, few studies evaluate fire effects on multiple components of fitness. Consequently, the magnitude and mechanism of fire effects on reproductive fitness remain unclear. Methods Over multiple years and prescribed burns in a prairie preserve, we counted flowering stems, flowers, fruits, and seeds of three prairie perennials, Echinacea angustifolia, Liatris aspera, and Solidago speciosa. We used aster life‐history models to assess how fire and mating opportunities influenced annual maternal fitness and its components in individual plants. Results In Echinacea and Liatris, but not in Solidago, fire increased head counts, and both fire and mating opportunities increased maternal fitness. Burned Echinacea and Liatris plants with many flower heads produced many seeds despite low seed set (fertilization rates). In contrast, plants with an average number of flower heads had high seed set and produced many seeds only when mating opportunities were abundant. Conclusions Fire increased annual reproductive fitness via resource‐ and pollination‐dependent mechanisms in Echinacea and Liatris but did not affect Solidago fitness. The consistent relationship between synchrony and seed set implies that temporal mating opportunities play an important role in pollination. While fire promotes flowering in many plant species, our results reveal that even closely related species exhibit differential responses to fire, which could impact the broader plant community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.