It is becoming increasingly apparent that the causes of autism spectrum disorders (ASD) are due to both genetic and environmental factors. Animal studies provide important translational models for elucidating specific genetic or environmental factors that contribute to ASD-related behavioral deficits. For example, mouse research has demonstrated a link between maternal immune activation and the expression of ASD-like behaviors. Although these studies have provided insights into the potential causes of ASD, they are limited in their ability to model the important interactions between genetic variability and environmental insults. This is of particular concern given the broad spectrum of severity observed in the human population, suggesting that subpopulations may be more susceptible to the adverse effects of particular environmental insults. It is hypothesized that the severity of effects of maternal immune activation on ASD-like phenotypes is influenced by the genetic background in mice. To test this, pregnant dams of two inbred strains (that is, C57BL/6J and BTBR T+tf/J) were exposed to the viral mimic polyinosinic-polycytidylic acid (polyI:C), and their offspring were tested for the presence and severity of ASD-like behaviors. To identify differences in immune system regulation, spleens were processed and measured for alterations in induced cytokine responses. Strain-treatment interactions were observed in social approach, ultrasonic vocalization, repetitive grooming and marble burying behaviors. Interestingly, persistent dysregulation of adaptive immune system function was only observed in BTBR mice. Data suggest that behavioral and immunological effects of maternal immune activation are strain-dependent in mice.
Although autism is a behaviorally defined disorder, many studies report an association with increased pro-inflammatory cytokine production. Recent characterization of the BTBR T+tf/J (BTBR) inbred mouse strain has revealed several behavioral characteristics including social deficits, repetitive behavior, and atypical vocalizations which may be relevant to autism. We therefore hypothesized that, asocial BTBR mice, which exhibit autism-like behaviors, may have an inflammatory immune profile similar to that observed in children with autism. The objectives of this study were to characterize the myeloid immune profile of BTBR mice and to explore their associations with autism-relevant behaviors. C57BL/6J (C57) mice and BTBR mice were tested for social interest and repetitive self-grooming behavior. Cytokine production was measured in bone-marrow derived macrophages incubated for 24 h in either growth media alone, LPS, IL-4/LPS, or IFNγ/LPS to ascertain any M1/M2 skewing. After LPS stimulation, BTBR macrophages produced higher levels of IL-6, MCP-1, and MIP-1α and lower IL-10 (p < 0.01) than C57 mice, suggesting an exaggerated inflammatory profile. After exposure to IL-4/LPS BTBR macrophages produced less IL-10 (p < 0.01) than C57 macrophages and more IL-12p40 (p < 0.01) suggesting poor M2 polarization. Levels of IL-12(p70) (p < 0.05) were higher in BTBR macrophages after IFNγ/LPS stimulation, suggesting enhanced M1 polarization. We further observed a positive correlation between grooming frequency, and production of IL-12(p40), IL-12p70, IL-6, and TNFα (p < 0.05) after treatment with IFNγ/LPS across both strains. Collectively, these data suggest that the asocial BTBR mouse strain exhibits a more inflammatory, or M1, macrophage profile in comparison to the social C57 strain. We have further demonstrated a relationship between this relative increase in inflammation and repetitive grooming behavior, which may have relevance to repetitive and stereotyped behavior of autism.
Several epidemiological studies have shown an association between infection or inflammation during pregnancy and increased risk of autism in the child. In addition, animal models have illustrated that maternal inflammation during gestation can cause autism-relevant behaviors in the offspring; so called maternal immune activation (MIA) models. More recently, permanent changes in T cell cytokine responses were reported in children with autism and in offspring of MIA mice; however, the cytokine responses of other immune cell populations have not been thoroughly investigated in these MIA models. Similar to changes in T cell function, we hypothesized that following MIA, offspring will have long-term changes in macrophage function. To test this theory, we utilized the poly (I:C) MIA mouse model in C57BL/6J mice and examined macrophage cytokine production in adult offspring. Pregnant dams were given either a single injection of 20 mg/kg polyinosinic–polycytidylic acid, poly (I:C), or saline delivered intraperitoneally on gestational day 12.5. When offspring of poly (I:C) treated dams reached 10 weeks of age, femurs were collected and bone marrow-derived macrophages were generated. Cytokine production was measured in bone marrow-derived macrophages incubated for 24 h in either growth media alone, LPS, IL-4/LPS, or IFN-γ/LPS. Following stimulation with LPS alone, or the combination of IFN-γ/LPS, macrophages from offspring of poly (I:C) treated dams produced higher levels of IL-12(p40) (p < 0.04) suggesting an increased M1 polarization. In addition, even without the presence of a polarizing cytokine or LPS stimulus, macrophages from offspring of poly (I:C) treated dams exhibited a higher production of CCL3 (p = 0.05). Moreover, CCL3 levels were further increased when stimulated with LPS, or polarized with either IL-4/LPS or IFN-γ/LPS (p < 0.05) suggesting a general increase in production of this chemokine. Collectively, these data suggest that MIA can produce lasting changes in macrophage function that are sustained into adulthood.
The state of the mother's immune system during pregnancy has an important role in fetal development and disruptions in the balance of this system are associated with a range of neurologic, neuropsychiatric and neurodevelopmental disorders. Epidemiological and clinical reports reveal various clues that suggest a possible association between developmental neuropsychiatric disorders and family history of immune system dysfunction. Over the past three decades, analogous increases have been reported in both the incidence of neurodevelopmental disorders and immune-related disorders, particularly allergy and asthma, raising the question of whether allergic asthma and characteristics of various neurodevelopmental disorders share common causal links. We used a mouse model of maternal allergic asthma to test this novel hypothesis that early fetal priming with an allergenic exposure during gestation produces behavioral deficits in offspring. Mothers were primed with an exposure to ovalbumin (OVA) before pregnancy, then exposed to either aerosolized OVA or vehicle during gestation. Both male and female mice born to mothers exposed to aerosolized OVA during gestation exhibited altered developmental trajectories in weight and length, decreased sociability and increased marble-burying behavior. Moreover, offspring of OVA-exposed mothers were observed to have increased serotonin transporter protein levels in the cortex. These data demonstrate that behavioral and neurobiological effects can be elicited following early fetal priming with maternal allergic asthma and provide support that maternal allergic asthma may, in some cases, be a contributing factor to neurodevelopmental disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.