Effective public response to a pandemic relies upon accurate measurement of the extent and dynamics of an outbreak. Viral genome sequencing has emerged as a powerful approach to link seemingly unrelated cases, and large-scale sequencing surveillance can inform on critical epidemiological parameters. Here, we report the analysis of 864 SARS-CoV-2 sequences from cases in the New York City metropolitan area during the COVID-19 outbreak in Spring 2020. The majority of cases had no recent travel history or known exposure, and genetically linked cases were spread throughout the region. Comparison to global viral sequences showed that early transmission was most linked to cases from Europe. Our data are consistent with numerous seeds from multiple sources and a prolonged period of unrecognized community spreading. This work highlights the complementary role of genomic surveillance in addition to traditional epidemiological indicators.
Sucrose octasulfate (SOS) is believed to stimulate fibroblast growth factor (FGF) signaling by binding and stabilizing FGFs. In this report, we show that SOS induces FGF-dependent dimerization of FGF receptors (FGFRs). The crystal structure of the dimeric FGF2-FGFR1-SOS complex at 2.6-Å resolution reveals a symmetric assemblage of two 1:1:1 FGF2-FGFR1-SOS ternary complexes. Within each ternary complex SOS binds to FGF and FGFR and thereby increases FGF-FGFR affinity. SOS also interacts with the adjoining FGFR and thereby promotes protein-protein interactions that stabilize dimerization. This structural finding is supported by the inability of selectively desulfated SOS molecules to promote receptor dimerization. Thus, we propose that SOS potentiates FGF signaling by imitating the dual role of heparin in increasing FGF-FGFR affinity and promoting receptor dimerization. Hence, the dimeric FGF-FGFR-SOS structure substantiates the recently proposed "two-end" model, by which heparin induces FGF-FGFR dimerization. Moreover, the FGF-FGFR-SOS structure provides an attractive template for the development of easily synthesized SOS-related heparin agonists and antagonists that may hold therapeutic potential.Fibroblast growth factors (FGFs; FGF1 to FGF22) regulate a wide array of physiological processes including embryogenesis, cell growth, differentiation, angiogenesis, tissue repair, and wound healing (30). The diverse activities of FGFs are mediated by four receptor tyrosine kinases (FGFR1 to FGFR4), each composed of an extracellular ligand-binding portion consisting of three immunoglobulin-like domains (D1 to D3), a single transmembrane helix, and a cytoplasmic portion with protein tyrosine kinase activity (18).Receptor dimerization is an obligatory event in FGF signaling and requires heparin or heparan sulfate proteoglycans (28). Two contrasting mechanisms for FGF receptor (FGFR) dimerization have emerged from the recent crystal structures of FGF-FGFR-heparin complexes. In the "two-end" model, deduced from the FGF2-FGFR1-heparin crystal structure, two 1:1:1 FGF-FGFR-heparin ternary complexes form a symmetric dimer (40). Each FGF binds to both receptors, and there is a direct contact between the two FGFRs. Within each ternary complex, heparin interacts extensively with FGF and FGFR, thereby enhancing FGF-FGFR affinity. Heparin also binds to the FGFR across the twofold dimer and thereby fortifies the interactions of FGF and FGFR from one ternary complex with FGFR in the other ternary complex. Thus, heparin fulfils an adapter role in receptor dimerization.In the model derived from the FGF1-FGFR2-heparin structure (33), a single heparin oligosaccharide bridges two FGF molecules into a dimer that in turn brings two receptor chains together. Heparin makes a different set of contacts with the two ligands and binds to one receptor only, resulting in the distinctive asymmetry of the dimer. Unlike the configuration in the two-end model, each FGF contacts a single FGFR and there is no direct FGFR-FGFR contact. The total lack of p...
SummaryIn addition to their role in primary hemostasis, platelets serve to support and maintain the vascular endothelium. Platelets contain numerous growth factors including the potent angiogenic inducers VEGF and FGF-2. To characterize the function of these two plateletassociated growth factors, the effects of the addition of purified platelets to cultured endothelial cells were examined. The survival and proliferation of endothelial cells were markedly stimulated (2-3-fold and 5-15-fold respectively) by the addition of gel-filtered platelets. Acetylsalicylic acid-treated or lyophilized fixed-platelets were ineffective in supporting endothelial cell proliferation. In Transwell assays, the stimulatory effect of platelets on endothelial cells was preserved, consistent with an effect mediated by secreted factors. The combined inhibition of VEGF and FGF-2 by neutralizing antibodies, in contrast to inhibition of either alone, abrogated both platelet-induced endothelial cell survival and proliferation. FGF-2 isoforms were detected in platelet lysates, as well as in the releasates of agonist-stimulated platelets. Megakaryocytes generated by ex vivo expansion of hematopoietic progenitor cells with kit ligand and thrombopoietin were analyzed for expression of FGF-2. Punctate cytoplasmic staining but no nuclear staining was observed by immunocytochemistry consistent with possible localization of the growth factor to cytoplasmic granules. The addition of platelets to cultured endothelial cells activated extracellular signal-regulated kinase (ERK) in a dose and time-dependent manner. This effect was abrogated by both anti-FGF-2 and anti-VEGF antibody. Since FGF-2 and VEGF are potent angiogenic factors and known endothelial cell survival factors, their release by platelets provides a plausible mechanism for the platelet support of vascular endothelium.
Effective public response to a pandemic relies upon accurate measurement of the extent and dynamics of an outbreak. Viral genome sequencing has emerged as a powerful approach to link seemingly unrelated cases, and large-scale sequencing surveillance can inform on critical epidemiological parameters. Here, we report the analysis of 236 SARS-CoV2 sequences from cases in the New York City metropolitan area during the initial stages of the 2020 COVID-19 outbreak. The majority of cases throughout the region had no recent travel history or known exposure, and genetically linked cases were spread throughout the region. Comparison to global viral sequences showed that the majority were most related to cases from Europe. Our data are consistent with numerous seed transmissions from multiple sources and a prolonged period of unrecognized community spreading. This work highlights the complementary role of real-time genomic surveillance in addition to traditional epidemiological indicators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.