Back-to-back light and heavy flavor dijet measurements are promising experimental channels to accurately study the physics of jet production and propagation in a dense QCD medium. They can provide new insights into the path length, color charge, and mass dependence of quark and gluon energy loss in the quark-gluon plasma produced in reactions of ultra-relativistic nuclei. To this end, we perform a comprehensive study of both light and heavy flavor dijet production in heavy ion collisions. We propose the modification of dijet invariant mass distributions in such reactions as a novel observable that shows enhanced sensitivity to the quark-gluon plasma transport properties and heavy quark mass effects on in-medium parton showers. This is achieved through the combination of the jet quenching effects on the individual jets as opposed to their subtraction. The latter drives the subtle effects on more conventional observables, such as the dijet momentum imbalance shifts, which we also calculate here. Results are presented in Pb+Pb collisions at √ sNN = 5.02 TeV for comparison to data at the Large Hadron Collider and in Au+Au collisions at √ sNN = 200 GeV to guide the future sPHENIX program at the Relativistic Heavy Ion Collider.
We study the energy loss of a heavy quark slowly moving through an evolving strongly coupled plasma. We use the linearized fluid/gravity correspondence to describe small perturbations of the medium flow with general spacetime dependence. This all order linearized hydrodynamics results in a drag force exerted on a heavy quark even when it is at rest with the fluid element. We show how the general contribution to the drag force can be derived order by order in the medium velocity gradients and provide explicit results valid up to the third order. We then obtain an approximate semi-analytic result for the drag force to all orders in the gradient expansion but linearized in the medium velocity. Thus, the effects of a class of hydrodynamic gradients on the drag force are re-summed, giving further insight into the dissipative properties of strongly coupled plasmas. The all order result allows us to study the drag force in the non-hydrodynamic regime of linear medium perturbations that vary rapidly in space and time.
Using Soft-Collinear Effective Theory, we develop the transverse-momentum-dependent factorization formalism for heavy flavor dijet production in polarized-proton-electron collisions. We consider heavy flavor mass corrections in the collinear-soft and jet functions, as well as the associated evolution equations. Using this formalism, we generate a prediction for the gluon Sivers asymmetry for charm and bottom dijet production at the future Electron-Ion Collider. Furthermore, we compare theoretical predictions with and without the inclusion of finite quark masses. We find that the heavy flavor mass effects can give sizable corrections to the predicted asymmetry.
The design of low temperature bolometric detectors for rare event searches necessitates careful selection and characterization of structural materials based on their thermal properties. We measure the thermal conductivities of polytetrafluoroethylene (PTFE) and Al 2 O 3 ceramic (alumina) in the temperature ranges of 0.17-0.43 K and 0.1-1.3 K, respectively. For the former, we observe a quadratic temperature dependence across the entire measured range. For the latter, we see a cubic dependence on temperature above 0.3 K, with a linear contribution below that temperature. This paper presents our measurement techniques, results, and theoretical discussions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.