This paper introduces an advanced rover localization system suitable for autonomous planetary exploration in the absence of Global Positioning System (GPS) infrastructure. Given an existing terrain map (image and elevation) obtained from satellite imagery and the images provided by the rover stereo camera system, the proposed method determines the best rover location through visual odometry, 3D terrain and horizon matching. The system is tested on data retrieved from a 3 km traverse of the Basalt Hills quarry in California where the GPS track is used as ground truth. Experimental results show the system presented here reduces by over 60% the localization error obtained by wheel odometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.