Daspletosaurus is a large tyrannosaurine found in upper Campanian deposits of Alberta and Montana. Although several large subadult and adult individuals of this taxon are known, only one juvenile individual, TMP 1994.143.1, has been identified. This specimen has played a key role in the idea that juvenile tyrannosaurid individuals are difficult to differentiate among species. Here the taxonomic affinity of TMP 1994.143.1 is reassessed in light of a juvenile tyrannosaurine postorbital recently discovered in the Dinosaur Park Formation of Alberta. Anatomical comparisons and phylogenetic analyses reveal that TMP 1994.143.1 is referable to the albertosaurine Gorgosaurus libratus, whereas the new postorbital belongs to a small juvenile Daspletosaurus. This taxonomic reassignment of TMP 1994.143.1 results in the juvenile ontogenetic stage of Daspletosaurus being known only from two isolated cranial elements. The new postorbital provides insights into early Daspletosaurus ontogeny, revealing that the cornual process developed earlier or faster than in other tyrannosaurids. Although some ontogenetic changes in the postorbital are found to be unique to Daspletosaurus, overall changes are most consistent with those of other large tyrannosaurines. Our results also show that diagnostic features develop early in ontogeny, such that juveniles of different tyrannosaurid species are easier to differentiate than previously thought.
The albertosaurines Albertosaurus sarcophagus and Gorgosaurus libratus are among the best represented tyrannosaurids, known from nearly complete growth series. These specimens provide an opportunity to study mandibular biomechanical properties and tooth morphology in order to infer changes in feeding behavior and bite force through ontogeny in tyrannosaurids. Mandibular force profiles reveal that the symphyseal region of albertosaurines is consistently stronger in bending than the middentary region, indicating that the anterior extremity of the jaws played an important role in prey capture and handling through ontogeny. The symphyseal region was better adapted to withstand torsional stresses than in most non-avian theropods, but not to the extent seen in Tyrannosaurus rex, suggesting that albertosaurine feeding behavior may have involved less bone crushing or perhaps relatively smaller prey than in T. rex. The constancy of these biomechanical properties at all known growth stages indicates that although albertosaurines maintained a similar feeding strategy through ontogeny, prey size/type had to change between juvenile and mature individuals. This ontogenetic dietary shift likely happened when individuals reached a mandibular length of ~58 cm, a size at which teeth shift from ziphodont to incrassate in shape and bite force begins to increase exponentially. The fact that large albertosaurines were capable of generating bite forces equivalent to similar-sized tyrannosaurines suggests that no significant differences in jaw closing musculature existed between the two clades and that the powerful bite of T. rex is the result of its large body size rather than of unique adaptations related to a specialized ecology.
North America is known for its rich uppermost Cretaceous record of dinosaur egg remains, although a notable fossil gap exists during the lower Maastrichtian. Here we describe a diverse dinosaur eggshell assemblage from the St. Mary River Formation of southern Alberta that, in conjunction with recently described eggs from the same formation in Montana, helps fill this gap and sheds light on the dinosaur diversity in this poorly fossiliferous formation. Three theropod eggshell types (Continuoolithus cf. C. canadensis, Montanoolithus cf. M. strongorum, and Prismatoolithus cf. P. levis) and one ornithopod (Spheroolithus cf. S. albertensis), are reported from Albertan exposures of the St. Mary River Formation, increasing the ootaxonomic diversity of the formation from two to five ootaxa. The taxonomic composition of the eggshell assemblage is consistent with the dinosaurian fauna known from the St. Mary River Formation based on skeletal remains. Spheroolithus eggshells constitute the majority of identifiable eggshells in our assemblage, a trend also observed in several other Upper Cretaceous formations from North America. Continuoolithus is shown to be synonymous with Spongioolithus, thus expanding the Maastrichtian geographic range of the ootaxon to include Utah. The St. Mary River eggshell assemblage supports a general trend of increase in eggshell thickness among theropod ootaxa from the uppermost Santonian through the Maastrichtian, which is inferred to reflect an increase in body size among some clades of small theropods through the Upper Cretaceous. Eggshell preservation in the St. Mary River Formation may be related to the semiarid climatic and environmental conditions that prevailed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.