Aero-engine blades crack detection is one of the important tasks in daily ground maintenance, crack is a kind of texture feature, due to the random distribution, irregular shape and vague characteristics, which is still a challenging task to realize automatic detection in working environment. A detection model based on the Yolov4-tiny is proposed that is universal and focuses more on the characteristics of cracks, and it is implemented in embedded device. First, in order to distinguish the cracks and noises, an improved attention module is introduced into the backbone of Yolov4-tiny to enhance the model's capability to focus on crack areas; second, in order to improve the effect of multi-scale feature fusion, the bicubic interpolation is implemented in upsampling module; finally, in order to solve the redundant detection results of bounding-boxes in crack areas, the optimized non-maximum suppression method is proposed to make the detection results better corresponding to the groundTruth. The robustness of proposed detection model was demonstrated by evaluating varying lighting and noise images. The average precision on integrated datasets is 81.6%, which outperforms the original Yolov4-tiny by an increase of 12.3%.
The “low, slow, and small” target (LSST) poses a significant threat to the military ground unit. It is hard to defend against due to its invisibility to numerous detecting devices. With the onboard deep learning-based object detection methods, the intelligent LSST (ILSST) can find and detect the ground unit autonomously in a denied environment. This paper proposes an adversarial patch-based defending method to blind the ILSST by attacking its onboard object detection network. First, an adversarial influence score was established to indicate the influence of the adversarial noise on the objects. Then, based on this score, we used the least squares algorithm and Bisectional search methods to search the patch’s optimal coordinates and size. Using the optimal coordinates and size, an adaptive patch-generating network was constructed to automatically generate patches on ground units and hide the ground units from the deep learning-based object detection network. To evaluate the efficiency of our algorithm, a new LSST view dataset was collected, and extensive attacking experiments are carried out on this dataset. The results demonstrate that our algorithm can effectively attack the object detection networks, is better than state-of-the-art adversarial patch-generating algorithms in hiding the ground units from the object detection networks, and has high transferability among the object detection networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.