Six male rowers rowed maximally for 2500 m in ergometer tests during normoxia (fractional concentration of oxygen in inspired air, F(I)O2 0.209), in hyperoxia (F(I)O2 0.622) and in hypoxia (F(I)O2 0.158) in a randomized single-blind fashion. Oxygen consumption (VO2), force production of strokes as well as integrated electromyographs (iEMG) and mean power frequency (MPF) from seven muscles were measured in 500-m intervals. The iEMG signals from individual muscles were summed to represent overall electrical activity of these muscles (sum-iEMG). Maximal force of a stroke (Fmax) decreased from the 100% pre-exercise maximal value to 67 (SD 12)%, 63 (SD 15)% and 76 (SD 13)% (P < 0.05 to normoxia, ANOVA) and impulse to 78 (SD 4)%, 75 (SD 14)% and 84 (SD 7)% (P < 0.05) in normoxia, hypoxia and hyperoxia, respectively. A strong correlation between Fmax and VO2 was found in normoxia but not in hypoxia and hyperoxia. The mean sum-iEMG tended to be lower (P < 0.05) in hypoxia than in normoxia but hyperoxia had no significant effect on it. In general, F(I)O2 did not affect MPF of individual muscles. In conclusion, it was found that force output during ergometer rowing was impaired during hypoxia and improved during hyperoxia when compared with normoxia. Moreover, the changes in force output were only partly accompanied by changes in muscle electrical activity as sum-iEMG was affected by hypoxic but not by hyperoxic gas. The lack of a significant correlation between Fmax and VO2 during hypoxia and hyperoxia may suggest a partial uncoupling of these processes and the existence of other limiting factors in addition to VO2.
Adult, untrained NMRI mice were exhausted on a motor-driven treadmill by an intermittent-type running programme. Serial cryostate sections for the staining of NADH-tetrazolium reductase, beta-glucuronidase, beta-N-acetylglucosaminidase, and beta-glycerophosphatase activities and for making hematoxylin-eosin staining were cut from m. quadriceps femoris 1, 2, 3, 5, 7, and 15 days after physical exhaustion. A strong increase in the activities of beta-glucuronidase and beta-N-acetylglucosaminidase was observed 7 days after exhaustion and the activity changes, which were similar for the both glycosidases, were more prominent in the highly oxidative red compared to less oxidative white fibres. Activity granules were more numerous in the perinuclear than the interfibrillar area of red fibres. Spots were arranged like longitudinal chains between myofibrils. Activity in connective tissue was usually observed only in animals exhausted 3--7 days earlier. Simultaneous activity in fibres exceeded that in connective tissue. beta-Glycerophosphatase activity was not, by the method used, seen in histologically "healthy" or normal-looking fibres. In samples taken 2--5 days after exhaustion some degenerating and necrotic fibres were observed. Inflammatory reaction was also observed being at its strongest five days after loading when mononuclear cells were seen inside necrotic fibres. The number of regenerating muscle cells was most abundant 7 days after exhaustion. It is suggested that temporary hypoxia, which accompanies exhaustive physical exercise in skeletal muscle, upsets the energy metabolism and homeostasis of fibres and causes the observed histological and histochemical alterations, which possess features typical of both lethal and sublethal acute cell injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.