Study Design. In silico finite element study. Objective. The aim of this study was to evaluate effects of six construct factors on rod and screw strain at the lumbosacral junction in an in silico pedicle subtraction osteotomy (PSO) model: traditional inline and alternative Ames-Deviren-Gupta (ADG) multi-rod techniques, number of accessory rods (three-rod vs. four-rod), rod material (cobalt-chrome [CoCr] or stainless steel [SS] vs. titanium [Ti]), rod diameter (5.5 vs. 6.35 mm), and use of cross-connectors (CC), or anterior column support (ACS). Summary of Background Data. Implant failure and pseudoarthrosis at the lumbosacral junction following PSO are frequently reported. Clinicians may modulate reconstructs with multiple rods, rod position, rod material, and diameter, and with CC or ACS to reduce mechanical demand. An evaluation of these features’ effects on rod and screw strains is lacking. Methods. A finite element model (T12–S1) with intervertebral discs and ligaments was created and validated with cadaveric motion data. Lumbosacral rod and screw strain data were collected for 96 constructs across all six construct factors and normalized to the Ti 2-Rod control. Results. The inline technique resulted in 12.5% to 51.3% more rod strain and decreased screw strain (88.3% to 95%) compared to ADG at the lumbosacral junction. An asymmetrical strain distribution was observed in the three-rod inline technique in comparison to four-rod, which was more evenly distributed. Regardless of construct features, rod strain was significantly decreased by rod material (CoCr > SS > Ti), and increasing rod diameter from 5.5 mm to 6.35 mm reduced strain by 9.9% to 22.1%. ACS resulted in significant reduction of rod (37.8%–59.8%) and screw strains (23.2%–65.8%). Conclusion. Increasing rod diameter, using CoCr rods, and ACS were the most effective methods in reducing rod strain at the lumbosacral junction. The inline technique decreased screw strain and increased rod strain compared to ADG. Level of Evidence: N/A.
Study Design. In silico finite element study. Objective. The aim of this study was to evaluate the effect of six construct factors on apical rod strain in an in silico pedicle subtraction osteotomy (PSO) model: traditional inline and alternative Ames-Deviren-Gupta (ADG) multi-rod techniques, number of accessory rods (three- vs. four-rod), rod material (cobalt-chrome [CoCr] or stainless steel [SS] vs. titanium [Ti]), rod diameter (5.5 vs. 6.35 mm), and use of cross-connectors (CC), or anterior column support (ACS). Summary of Background Data. Rod fracture following lumbar PSO is frequently reported. Clinicians may modulate reconstructs with multiple rods, rod position, rod material and diameter, and with CC or ACS to reduce mechanical demand or rod contouring. A comprehensive evaluation of these features on rod strain is lacking. Methods. A finite element model (T12–S1) with intervertebral discs and ligaments was created and validated with cadaveric motion data. Apical rod strain of primary and accessory rods was collected for 96 constructs across all six construct factors, and normalized to the Ti two-rod control. Results. Regardless of construct features, CoCr and SS material reduced strain across all rods by 49.1% and 38.1%, respectively; increasing rod diameter from 5.5 mm to 6.35 mm rods reduced strain by 32.0%. Use of CC or lumbosacral ACS minimally affected apical rod strain (<2% difference from constructs without CC or ACS). Compared to the ADG technique, traditional inline reconstruction reduced primary rod strain by 32.2%; however, ADG primary rod required 14.2° less rod contouring. The inline technique produced asymmetrical loading between left and right rods, only when three rods were used. Conclusion. The number of rods and position of accessory rods affected strain distribution on posterior fixation. Increasing rod diameter and using CoCr rods was most effective in reducing rod strain. Neither CC nor lumbosacral ACS affected apical rod strain. Level of Evidence: N/A
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.